ﻻ يوجد ملخص باللغة العربية
Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wave function overlap and is therefore short-ranged, so that it may be compromised across the interface. Here we study a hybrid structure consisting of a ferromagnetic Co-layer and a semiconducting CdTe quantum well, separated by a thin (Cd,Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wave function overlap of quantum well holes and magnetic Co atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 10 nm. We suggest that the resulting spin polarization of the holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.
The exchange interaction between magnetic ions and charge carriers in semiconductors is considered as prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range $p-d$ exchange interacti
Voltage control of ferromagnetism on the nanometer scale is highly appealing for the development of novel electronic devices. Here a key challenge is to implement and combine low power consumption, high operation speed, reliable reversibility and com
The direct growth of semiconductors over metals by molecular beam epitaxy is a difficult task due to the large differences in crystallization energy between these types of materials. This aspect is problematic in the context of spintronics, where coh
A longstanding goal of research in semiconductor spintronics is the ability to inject, modulate, and detect electron spin in a single device. A simple prototype consists of a lateral semiconductor channel with two ferromagnetic contacts, one of which
Superconductor-semiconductor hybrids are platforms for realizing effective $p$-wave superconductivity. Spin-orbit coupling, combined with the proximity effect, causes the two-dimensional semiconductor to inherit $p pm i p$ intraband pairing, and appl