ﻻ يوجد ملخص باللغة العربية
We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM = Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn1-xTMxO, the localized TM2+ configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy eF close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with eF close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.
The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of transition metal (TM=Mn, Co) impurities in p-type ZnO. Based on the total energy considerations, we find a stable localis
First principles calculations have been used to investigate the trends on the properties of isolated 3d transition metal impurities (from Sc to Cu) in diamond. Those impurities have small formation energies in the substitutional or double semi-vacanc
Semiconductors offer a promising platform for the physical implementation of qubits, demonstrated by the successes in quantum sensing, computing, and communication. The broad adoption of semiconductor qubits is presently hindered by limited scalabili
Dopants of transition metal ions in II-VI semiconductors exhibit native 2+ valency. Despite this, 3+ or mixed 3+/2+ valency of iron ions in ZnO was reported previously. Several contradictory mechanisms have been put forward for explanation of this fa
We report on x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies of the paramagnetic (Mn,Co)-co-doped ZnO and ferromagnetic (Fe,Co)-co-doped ZnO nano-particles. Both the surface-sensitive total-electron-yield mode