ﻻ يوجد ملخص باللغة العربية
The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^mu$. These Lorentz- and CPT-violating photons have well-known theoretical issues that arise from missing states at low momenta when $k_{AF}^mu$ is timelike. In order to make the theory consistent, a tiny mass for the photon can be introduced, well below current experimental bounds. The implementation of canonical quantization can then be implemented as in the CPT-preserving case by using the Stuckelberg mechanism. We explicitly construct a covariant basis of properly-normalized polarization vectors at fixed three-momentum satisfying the momentum space field equations, in terms of which the vector field can be expanded. As an application of the theory, we calculate the Cherenkov radiation rate for the case of purely timelike $k_{AF}^mu$, and find a radiation rate at high energies that has a contribution that does not depend on the mass used to regulate the photons.
We perform the covariant canonical quantization of the CPT- and Lorentz-symmetry-violating photon sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike) fixed background tensor $k_{AF}^mu$. Well-k
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w
This work reviews our current understanding of Cherenkov-type processes in vacuum that may occur due to a possible violation of Lorentz invariance. The description of Lorentz violation is based on the Standard Model Extension (SME). To get an overvie
We review the status of CPT violation in the neutrino sector. Apart from LSND, current data favors three flavors of light stable neutrinos and antineutrinos, with both halves of the spectrum having one smaller mass splitting and one larger mass split
Perturbative calculations in quantum field theory often require the regularization of infrared divergences. In quantum electrodynamics, such a regularization can for example be accomplished by a photon mass introduced via the Stueckelberg method. The