ﻻ يوجد ملخص باللغة العربية
This work reviews our current understanding of Cherenkov-type processes in vacuum that may occur due to a possible violation of Lorentz invariance. The description of Lorentz violation is based on the Standard Model Extension (SME). To get an overview as general as possible, the most important findings for vacuum Cherenkov radiation in Minkowski spacetime are discussed. After doing so, special emphasis is put on gravitational Cherenkov radiation. For a better understanding, the essential properties of the gravitational SME are recalled in this context. The common grounds and differences of vacuum Cherenkov radiation in Minkowski spacetime and in the gravity sector are emphasized.
The current article reviews results on vacuum Cherenkov radiation obtained for modified fermions. Two classes of processes can occur that have completely distinct characteristics. The first one does not include a spin flip of the radiating fermion, w
The photon emission by an ultrarelativistic charged particle in extremely strong magnetic field is analyzed, with vacuum polarization and photon recoil taken into account. The vacuum polarization is treated phenomenologically via refractive index. Th
We study the Cherenkov effect in the context of the Maxwell-Chern-Simons (MCS) limit of the Standard Model Extension. We present a method to determine the exact radiation rate for a point charge.
Cherenkov radiation may occur whenever the source is moving faster than the waves it generates. In a radiation dominated universe, with equation-of-state $w = 1/3$, we have recently shown that the Bardeen scalar-metric perturbations contribute to the
The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^mu$. These Lorentz- and CPT-violating photons have well-