ﻻ يوجد ملخص باللغة العربية
We perform the covariant canonical quantization of the CPT- and Lorentz-symmetry-violating photon sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike) fixed background tensor $k_{AF}^mu$. Well-known stability issues, arising from complex-valued energy states, are solved by introducing a small photon mass, orders of magnitude below current experimental bounds. We explicitly construct a covariant basis of polarization vectors, in which the photon field can be expanded. We proceed to derive the Feynman propagator and show that the theory is microcausal. Despite the occurrence of negative energies and vacuum-Cherenkov radiation, we do not find any runaway stability issues, because the energy remains bounded from below. An important observation is that the ordering of the roots of the dispersion relations is the same in any observer frame, which allows for a frame-independent condition that selects the correct branch of the dispersion relation. This turns out to be critical for the consistency of the quantization. To our knowledge, this is the first system for which quantization has consistently been performed, in spite of the fact that the theory contains negative energies in some observer frames.
We present a consistent, generally covariant quantization of light for non-vacuum birefringent, Lorentz-symmetry breaking electrodynamics in the context of the Standard Model Extension. We find that the number of light quanta in the field is not fram
The source of CPT-violation in the photon sector of the Standard Model Extension arises from a Chern-Simons-like contribution that involves a coupling to a fixed background vector field $k_{AF}^mu$. These Lorentz- and CPT-violating photons have well-
We investigate an alternative CPT-odd Lorentz-breaking QED which includes the Carroll-Field-Jackiw (CFJ) term of the Standard Model Extension (SME), writing the gauge sector in the action in a Palatini-like form, in which the vectorial field and the
In this paper, we discuss the gluon propagator in the linear covariant gauges in $D=2,3,4$ Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau
The effects of a Lorentz symmetry violating background vector on the Aharonov-Casher scattering in the nonrelativistic limit is considered. By using the self-adjoint extension method we found that there is an additional scattering for any value of th