ﻻ يوجد ملخص باللغة العربية
Recent phenomenological analysis of experimental data on DIS processes induced by charged leptons and neutrinos/antineutrinos beams on nuclear targets by CTEQ collaboration has confirmed the observation of CCFR and NuTeV collaborations, that weak structure function $F_{2A}^{Weak} (x,Q^2)$ is different from electromagnetic structure function $F_{2A}^{EM} (x,Q^2)$ in a nucleus like iron, specially in the region of low $x$ and $Q^2$. In view of this observation we have made a study of nuclear medium effects on $F_{2A}^{Weak} (x,Q^2)$ and $F_{2A}^{EM} (x,Q^2)$ for a wide range of $x$ and $Q^2$ using a microscopic nuclear model. We have considered Fermi motion, binding energy, nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects to incorporate nuclear medium effects. The calculations are performed in a local density approximation using a relativistic nucleon spectral function which includes nucleon correlations. The numerical results in the case of iron nucleus are compared with the experimental data.
We have studied nuclear structure functions $F_{1A}(x,Q^2)$ and $F_{2A}(x,Q^2)$ for electromagnetic and weak processes in the region of $1 GeV^2 < Q^2 <8 GeV^2$. The nuclear medium effects arising due to Fermi motion, binding energy, nucleon correlat
Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions $F_1(x,Q^2)$, $F_2(x,Q^2)$ and $F_L(x,Q^2)$ in $^{12}C$, $^{27}Al$, $^{56}Fe$ and $^{64}Cu$ nuclei. The m
We consider the effect of higher twist operators of the Wilson operator product expansion in the structure function $F_{2}(x,Q^{2})$ at small-$x$, taking into account QCD effective charges whose infrared behavior is constrained by a dynamical mass sc
We derive a second-order linear differential equation for the leading order gluon distribution function G(x,Q^2) = xg(x,Q^2) which determines G(x,Q^2) directly from the proton structure function F_2^p(x,Q^2). This equation is derived from the leading
Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at la