ﻻ يوجد ملخص باللغة العربية
We derive a second-order linear differential equation for the leading order gluon distribution function G(x,Q^2) = xg(x,Q^2) which determines G(x,Q^2) directly from the proton structure function F_2^p(x,Q^2). This equation is derived from the leading order DGLAP evolution equation for F_2^p(x,Q^2), and does not require knowledge of either the individual quark distributions or the gluon evolution equation. Given an analytic expression that successfully reproduces the known experimental data for F_2^p(x,Q^2) in a domain x_min<=x<=x_max, Q_min^2<=Q^2<=Q_max^2 of the Bjorken variable x and the virtuality Q^2 in deep inelastic scattering, G(x,Q^2) is uniquely determined in the same domain. We give the general solution and illustrate the method using the recently proposed Froissart bound type parametrization of F_2^p(x,Q^2) of E. L. Berger, M. M. Block and C-I. Tan, PRL 98, 242001, (2007). Existing leading-order gluon distributions based on power-law description of individual parton distributions agree roughly with the new distributions for x>~10^-3 as they should, but are much larger for x<~10^-3.
Light-front Hamiltonian dynamics is used to relate low-energy constituent quark models to deep inelastic unpolarized structure functions of the nucleon. The approach incorporates the correct Pauli principle prescription consistently and it allows a t
The twist--2 heavy flavor contributions to the polarized structure function $g_2(x,Q^2)$ are calculated. We show that this part of $g_2(x,Q^2)$ is related to the heavy flavor contribution to $g_1(x,Q^2)$ by the Wandzura--Wilczek relation to all order
Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the
Structure function data provide insight into the nucleon quark distribution. They are relatively straightforward to extract from the worlds vast, and growing, amount of inclusive lepto-production data. In turn, structure functions can be used to mode
We calculate moments of the $O(alpha_s^3)$ heavy flavor contributions to the Wilson coefficients of the structure function $F_2(x,Q^2)$ in the region $Q^2gg m^2$. The massive Wilson coefficients are obtained as convolutions of massive operator ma