ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Structure Functions in the Large x Large Q^2 Kinematic Region in Neutrino Deep Inelastic Scattering

60   0   0.0 ( 0 )
 نشر من قبل Randy A. Johnson
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment at Fermilab contain events with large Bjorken x (x>0.7) and high momentum transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no nuclear effects at large x, shows a significant excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the excess. Adding a higher momentum tail due to the formation of ``quasi-deuterons makes some improvement. An exponentially falling F_2 propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters and ``few-nucleon correlations, can describe the data. A value of s=8.3 pm 0.7(stat.)pm 0.7(sys.) yields the best agreement with the data.



قيم البحث

اقرأ أيضاً

A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.
We have studied nuclear structure functions $F_{1A}(x,Q^2)$ and $F_{2A}(x,Q^2)$ for electromagnetic and weak processes in the region of $1 GeV^2 < Q^2 <8 GeV^2$. The nuclear medium effects arising due to Fermi motion, binding energy, nucleon correlat ions, mesonic contributions and shadowing effects are taken into account using a many body field theoretical approach. The calculations are performed in a local density approximation using a relativistic nucleon spectral function. The results are compared with the available experimental data. Implications of nuclear medium effects on the validity of Callan-Gross relation are also discussed.
The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, a nd Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Good agreement is found between the data and predicted ratios, based on charged-lepton nucleus scattering, at medium x and low neutrino energies. However, the data rate appears depleted in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high neutrino energy , is consistent with previous MINERvA observations and with the predicted onset of nuclear shadowing with the the axial-vector current in neutrino scattering.
84 - Ben D. Pecjak 2005
We use soft-collinear effective theory (SCET) to study the factorization properties of deep inelastic scattering in the region of phase space where 1-x = O(Lambda_{QCD/Q}). By applying a regions analysis to loop diagrams in the Breit frame, we show t hat the appropriate version of SCET includes anti-hard-collinear, collinear, and soft-collinear fields. We find that the effects of the soft-collinear fields spoil perturbative factorization even at leading order in the 1/Q expansion.
High Q^2 NC and CC cross-sections as measured at HERA can give information on two distinct areas of current interest. Firstly, supposing that all the electroweak parameters are well known, these cross-sections may be used to give information on parto n distributions at high x and high Q^2. Secondly, supposing that parton distributions are well known, after evolution in Q^2 from the kinematic regime where they are already measured, these cross-sections can be used to give information on electroweak parameters in a process where the exchanged boson is `spacelike rather than `timelike. WG1 addressed itself to clarifying the limits of our present and possible future knowledge on both these areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا