ترغب بنشر مسار تعليمي؟ اضغط هنا

Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates

87   0   0.0 ( 0 )
 نشر من قبل Giordano Mattoni
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material.



قيم البحث

اقرأ أيضاً

We present a computationally efficient method to obtain the spectral function of bulk systems in the framework of steady-state density functional theory (i-DFT) using an idealized Scanning Tunneling Microscope (STM) setup. We calculate the current th rough the STM tip and then extract the spectral function from the finite-bias differential conductance. The fictitious non-interacting system of i-DFT features an exchange-correlation (xc) contribution to the bias which guarantees the same current as in the true interacting system. Exact properties of the xc bias are established using Fermi-liquid theory and subsequently implemented to construct approximations for the Hubbard model. We show for two different lattice structures that the metal-insulator transition is captured by i-DFT.
175 - Yin Shi , Long-Qing Chen 2020
From thermodynamic analysis we demonstrate that during metal-insulator transitions in pure matters, a nonequilibrium homogeneous state may be unstable against charge density modulations with certain wavelengths, and thus evolves to the equilibrium ph ase through transient electronic phase separation. This phase instability occurs as two inequalities between the first and the second derivatives of the free energy with respect to the order parameter are fulfilled. The dominant wavelength of the modulated phase is also derived. The computer simulation further confirms the theoretical derivation. Employing the pre-established phase-field model of VO$_2$, we show that this transient electronic phase separation may take place in VO$_2$ upon photoexcitation.
We present results from an experimental study of the equilibrium and non-equilibrium transport properties of vanadium oxide nanobeams near the metal-insulator transition (MIT). Application of a large electric field in the insulating phase across the nanobeams produces an abrupt MIT and the individual roles of thermal and non-thermal effects in driving the transition are studied. Transport measurements at temperatures ($T$) far below the critical temperature ($T_c$) of MIT, in several nanoscale vanadium oxide devices, show that both $T$ and electric field play distinctly separate, but critical roles in inducing the MIT. Specifically, at $T << T_c$ electric field dominates the MIT through an avalanche-type process, whereas thermal effects become progressively critical as $T$ approaches $T_c$.
Metal-to-insulator transitions (MIT) can be driven by a number of different mechanisms, each resulting in a different type of insulator -- Change in chemical potential can induce a transition from a metal to a band insulator; strong correlations can drive a metal into a Mott insulator with an energy gap; an Anderson transition, on the other hand, due to disorder leads to a localized insulator without a gap in the spectrum. Here we report the discovery of an alternative route for MIT driven by the creation of a network of narrow channels. Transport data on Pt substituted for Ti in TiSe$_2$ shows a dramatic increase of resistivity by five orders of magnitude for few % of Pt substitution, with a power-law dependence of the temperature-dependent resistivity $rho(T)$. Our scanning tunneling microscopy data show that Pt induces an irregular network of nanometer-thick domain walls (DWs) of charge density wave (CDW) order, which pull charge carriers out of the bulk and into the DWs. While the CDW domains are gapped, the charges confined to the narrow DWs interact strongly, with pseudogap-like suppression in the local density of states, even when they were weakly interacting in the bulk, and scatter at the DW network interconnects thereby generating the highly resistive state. Angle-resolved photoemission spectroscopy spectra exhibit pseudogap behavior corroborating the spatial coexistence of gapped domains and narrow domain walls with excess charge carriers.
125 - O. Gunawan , T. Gokmen , K. Vakili 2006
Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the systems valle y and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا