ترغب بنشر مسار تعليمي؟ اضغط هنا

Semicrossed products of operator algebras and their C*-envelopes

292   0   0.0 ( 0 )
 نشر من قبل Elias Katsoulis
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be a unital operator algebra and let $alpha$ be an automorphism of $A$ that extends to a *-automorphism of its $ca$-envelope $cenv (A)$. In this paper we introduce the isometric semicrossed product $A times_{alpha}^{is} bbZ^+ $ and we show that $cenv(A times_{alpha}^{is} bbZ^+) simeq cenv (A) times_{alpha} bbZ$. In contrast, the $ca$-envelope of the familiar contractive semicrossed product $A times_{alpha} bbZ^+ $ may not equal $cenv (A) times_{alpha} bbZ$. Our main tool for calculating $ca$-envelopes for semicrossed products is the concept of a relative semicrossed product of an operator algebra, which we explore in the more general context of injective endomorphisms. As an application, we extend a recent result of Davidson and Katsoulis to tensor algebras of $ca$-correspondences. We show that if $T_{X}^{+}$ is the tensor algebra of a $ca$-correspondence $(X, fA)$ and $alpha$ a completely isometric automorphism of $T_{X}^{+}$ that fixes the diagonal elementwise, then the contractive semicrossed product satisfies $ cenv(T_{X}^{+} times_{alpha} bbZ^+)simeq O_{X} times_{alpha} bbZ$, where $O_{X}$ denotes the Cuntz-Pimsner algebra of $(X, fA)$.



قيم البحث

اقرأ أيضاً

303 - Elias G. Katsoulis 2016
This paper is an expanded version of the lectures I delivered at the Indian Statistical Institute, Bangalore, during the OTOA 2014 conference.
In this paper we study the C*-envelope of the (non-self-adjoint) tensor algebra associated via subproduct systems to a finite irreducible stochastic matrix $P$. Firstly, we identify the boundary representations of the tensor algebra inside the Toepli tz algebra, also known as its non-commutative Choquet boundary. As an application, we provide examples of C*-envelopes that are not *-isomorphic to either the Toeplitz algebra or the Cuntz-Pimsner algebra. This characterization required a new proof for the fact that the Cuntz-Pimsner algebra associated to $P$ is isomorphic to $C(mathbb{T}, M_d(mathbb{C}))$, filling a gap in a previous paper. We then proceed to classify the C*-envelopes of tensor algebras of stochastic matrices up to *-isomorphism and stable isomorphism, in terms of the underlying matrices. This is accomplished by determining the K-theory of these C*-algebras and by combining this information with results due to Paschke and Salinas in extension theory. This classification is applied to provide a clearer picture of the various C*-envelopes that can land between the Toeplitz and the Cuntz-Pimsner algebras.
Let $(G, P)$ be an abelian, lattice ordered group and let $X$ be a compactly aligned product system over $P$. We show that the C*-envelope of the Nica tensor algebra $mathcal{N}mathcal{T}^+_X$ coincides with both Sehnems covariance algebra $mathcal{A } times_X P$ and the co-universal C*-algebra $mathcal{N}mathcal{O}^r_X$ for injective, gauge compatible, Nica-covariant representations of Carlsen, Larsen, Sims and Vittadello. We give several applications of this result on both the selfadjoint and non-selfadjoint operator algebra theory. First we guarantee the existence of $mathcal{N}mathcal{O}^r_X$, thus settling a problem of Carlsen, Larsen, Sims and Vittadello which was open even for abelian, lattice ordered groups. As a second application, we resolve a problem posed by Skalski and Zacharias on dilating isometric representations of product systems to unitary representations. As a third application we characterize the C*-envelope of the tensor algebra of a finitely aligned higher-rank graph which also holds for topological higher-rank graphs. As a final application we prove reduced Hao-Ng isomorphisms for generalized gauge actions of discrete groups on C*-algebras of product systems. This generalizes recent results that were obtained by various authors in the case where $(G, P) =(mathbb{Z},mathbb{N})$.
A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is the smallest C*-algebraic cosystem that contains an equiv ariant completely isometric copy of the original one. We show that the C*-envelope for a cosystem always exists and we explain how it relates to the usual C*-envelope. We then show that for compactly aligned product systems over group-embeddable right LCM semigroups, the C*-envelope is co-universal, in the sense of Carlsen, Larsen, Sims and Vittadello, for the Fock tensor algebra equipped with its natural coaction. This yields the existence of a co-universal C*-algebra, generalizing previous results of Carlsen, Larsen, Sims and Vittadello, and of Dor-On and Katsoulis. We also realize the C*-envelope of the tensor algebra as the reduced cross sectional algebra of a Fell bundle introduced by Sehnem, which, under a mild assumption of normality, we then identify to the quotient of the Fock algebra by the image of Sehnems strong covariance ideal. In another application, we obtain a reduced Hao-Ng isomorphism theorem for the co-universal algebras.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا