ﻻ يوجد ملخص باللغة العربية
The newly observed isomer and ground-state band in the odd-Z neutron-rich rare-earth nucleus $^{163}$Eu are investigated by using the cranked shell model (CSM) with pairing treated by the particle-number conserving (PNC) method. This is the first time detailed theoretical investigations are performed of the observed $964(1)$ keV isomer and ground-state rotational band in $^{163}$Eu. The experimental data are reproduced very well by the theoretical results. The configuration of the $964(1)$ keV isomer is assigned as the three-particle state $frac{13}{2}^{-}( ufrac{7}{2}^{+}[633]otimes ufrac{1}{2}^{-}[521]otimespifrac{5}{2}^{+}[413]$). More low-lying multi-particle states are predicted in $^{163}$Eu. Due to its significant effect on the nuclear mean field, the high-order $varepsilon_{6}$ deformation plays an important role in the energy and configuration assignment of the multi-particle states. Compared to its neighboring even-even nuclei $^{162}$Sm and $^{164}$Gd, there is a $10%sim15%$ increase of $J^{(1)}$ of the one-particle ground-state band in $^{163}$Eu. This is explained by the pairing reduction due to the blocking of the nucleon on the proton $pifrac{5}{2}^{+}$[413] orbital in $^{163}$Eu.
The rotational bands in the neutron-rich nuclei $^{153-157}$Pm are investigated by a particle-number conserving method. The kinematic moments of inertia for the 1-quasiparticle bands in odd-$A$ Pm isotopes $^{153, 155, 157}$Pm are reproduced quite we
Experimentally observed ground state band based on the $1/2^{-}[521]$ Nilsson state and the first exited band based on the $7/2^{-}[514]$ Nilsson state in the odd-$Z$ nucleus $^{255}$Lr are studied by the cranked shell model (CSM) with the paring cor
We investigate the influence of deformation on the possible occurrence of long-lived $K$ isomers in Hf isotopes around N=116, using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the mult
The neutron rich nucleus $^{193}$Os was produced in the $^{192}$Os($^{7}$Li,$^{6}$Li)$^{193}$Os reaction. An isomeric state based on the $9/2^-$[505] nilsson orbital was identified in the present work. Half-life of the isomeric state was extracted an
The structure of the nucleus 25F was investigated through in-beam {gamma}-ray spectroscopy of the fragmentation of 26Ne and 27,28Na ion beams. Based on the particle-{gamma} and particle-{gamma}{gamma} coincidence data, a level scheme was constructed