ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantizations of isomonodromic Hamiltonian Garnier system with two degrees of freedom

431   0   0.0 ( 0 )
 نشر من قبل Bulat Suleimanov Irekovich
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct solutions of analogues of the nonstationary Schrodinger equation corresponding to the polynomial isomonodromic Hamiltonian Garnier system with two degrees of freedom. This solutions are obtained from solutions of systems of linear ordinary differential equations whose compatibility condition is the Garnier system. This solutions upto explicit transform also satisfy the Belavin --- Polyakov --- Zamolodchikov equations with four time variables and two space variables.



قيم البحث

اقرأ أيضاً

In this paper, we show that it is always possible to deform a differential equation $partial_x Psi(x) = L(x) Psi(x)$ with $L(x) in mathfrak{sl}_2(mathbb{C})(x)$ by introducing a small formal parameter $hbar$ in such a way that it satisfies the Topolo gical Type properties of Berg`ere, Borot and Eynard. This is obtained by including the former differential equation in an isomonodromic system and using some homogeneity conditions to introduce $hbar$. The topological recursion is then proved to provide a formal series expansion of the corresponding tau-function whose coefficients can thus be expressed in terms of intersections of tautological classes in the Deligne-Mumford compactification of the moduli space of surfaces. We present a few examples including any Fuchsian system of $mathfrak{sl}_2(mathbb{C})(x)$ as well as some elements of Painleve hierarchies.
463 - Bulat Suleimanov 2012
We construct a solution of an analog of the Schr{o}dinger equation for the Hamiltonian $ H_I (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painleve I hierarchy. This solution is produced by an explicit change of var iables from a solution of the linear equations whose compatibility condition is the ordinary differential equation $P_1^2$ with respect to $z$. This solution also satisfies an analog of the Schr{o}dinger equation corresponding to the Hamiltonian $ H_{II} (z, t, q_1, q_2, p_1, p_2) $ of Hamiltonian system with respect to $t$ which is compatible with $P_1^2$. A similar situation occurs for the $P_2^2$ equation in the Painleve II hierarchy.
108 - P. Gavrylenko , O. Lisovyy 2016
We derive Fredholm determinant representation for isomonodromic tau functions of Fuchsian systems with $n$ regular singular points on the Riemann sphere and generic monodromy in $mathrm{GL}(N,mathbb C)$. The corresponding operator acts in the direct sum of $N(n-3)$ copies of $L^2(S^1)$. Its kernel has a block integrable form and is expressed in terms of fundamental solutions of $n-2$ elementary 3-point Fuchsian systems whose monodromy is determined by monodromy of the relevant $n$-point system via a decomposition of the punctured sphere into pairs of pants. For $N=2$ these building blocks have hypergeometric representations, the kernel becomes completely explicit and has Cauchy type. In this case Fredholm determinant expansion yields multivariate series representation for the tau function of the Garnier system, obtained earlier via its identification with Fourier transform of Liouville conformal block (or a dual Nekrasov-Okounkov partition function). Further specialization to $n=4$ gives a series representation of the general solution to Painleve VI equation.
We construct the general solution of a class of Fuchsian systems of rank $N$ as well as the associated isomonodromic tau functions in terms of semi-degenerate conformal blocks of $W_N$-algebra with central charge $c=N-1$. The simplest example is give n by the tau function of the Fuji-Suzuki-Tsuda system, expressed as a Fourier transform of the 4-point conformal block with respect to intermediate weight. Along the way, we generalize the result of Bowcock and Watts on the minimal set of matrix elements of vertex operators of the $W_N$-algebra for generic central charge and prove several properties of semi-degenerate vertex operators and conformal blocks for $c=N-1$.
We present an approach that gives rigorous construction of a class of crossing invariant functions in $c=1$ CFTs from the weakly invariant distributions on the moduli space $mathcal M_{0,4}^{SL(2,mathbb{C})}$ of $SL(2,mathbb{C})$ flat connections on the sphere with four punctures. By using this approach we show how to obtain correlation functions in the Ashkin-Teller and the Runkel-Watts theory. Among the possible crossing-invariant theories, we obtain also the analytic Liouville theory, whose consistence was assumed only on the basis of numerical tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا