ﻻ يوجد ملخص باللغة العربية
We investigate the effects of magnetic and nonmagnetic impurities on the two-dimensional surface states of three-dimensional topological insulators (TIs). Modeling weak and strong TIs using a generic four-band Hamiltonian, which allows for a breaking of inversion and time-reversal symmetries and takes into account random local potentials as well as the Zeeman and orbital effects of external magnetic fields, we compute the local density of states, the single-particle spectral function, and the conductance for a (contacted) slab geometry by numerically exact techniques based on kernel polynomial expansion and Greens function approaches. We show that bulk disorder refills the suface-state Dirac gap induced by a homogeneous magnetic field with states, whereas orbital (Peierls-phase) disorder perserves the gap feature. The former effect is more pronounced in weak TIs than in strong TIs. At moderate randomness, disorder-induced conducting channels appear in the surface layer, promoting diffusive metallicity. Random Zeeman fields rapidly destroy any conducting surface states. Imprinting quantum dots on a TIs surface, we demonstrate that carrier transport can be easily tuned by varying the gate voltage, even to the point where quasi-bound dot states may appear.
Our understanding of topological insulators is based on an underlying crystalline lattice where the local electronic degrees of freedom at different sites hybridize with each other in ways that produce nontrivial band topology, and the search for mat
We consider extended Hubbard models with repulsive interactions on a Honeycomb lattice and the transitions from the semi-metal phase at half-filling to Mott insulating phases. In particular, due to the frustrating nature of the second-neighbor repuls
The traditional concept of phase transitions has, in recent years, been widened in a number of interesting ways. The concept of a topological phase transition separating phases with a different ground state topology, rather than phases of different s
The modern theory of electric polarization has recently been extended to higher multipole moments, such as quadrupole and octupole moments. The higher electric multipole insulators are essentially topological crystalline phases protected by underlyin
Topological insulators in three dimensions are characterized by a Z2-valued topological invariant, which consists of a strong index and three weak indices. In the presence of disorder, only the strong index survives. This paper studies the topologica