ﻻ يوجد ملخص باللغة العربية
The modern theory of electric polarization has recently been extended to higher multipole moments, such as quadrupole and octupole moments. The higher electric multipole insulators are essentially topological crystalline phases protected by underlying crystalline symmetries. Henceforth, it is natural to ask what are the consequences of symmetry breaking in these higher multipole insulators. In this work, we investigate topological phases and the consequences of symmetry breaking in generalized electric quadrupole insulators. Explicitly, we generalize the Benalcazar-Bernevig-Hughes model by adding specific terms in order to break the crystalline and non-spatial symmetries. Our results show that chiral symmetry breaking induces an indirect gap phase which hides corner modes in bulk bands, ruining the topological quadrupole phase. We also demonstrate that quadrupole moments can remain quantized even when mirror symmetries are absent in a generalized model. Furthermore, it is shown that topological quadrupole phase is robust against a unique type of disorder presented in the system.
We investigate disorder-driven topological phase transitions in quantized electric quadrupole insulators. We show that chiral symmetry can protect the quantization of the quadrupole moment $q_{xy}$, such that the higher-order topological invariant is
We consider a three-dimensional topological insulator (TI) wire with a non-uniform chemical potential induced by gating across the cross-section. This inhomogeneity in chemical potential lifts the degeneracy between two one-dimensional surface state
Higher-rank electric/magnetic multipole moments are attracting attention these days as candidate order parameters for exotic material phases. However, quantum-mechanical formulation of those multipole moments is still an ongoing issue. In this paper,
A quadrupole topological insulator, being one higher-order topological insulator with nontrivial quadrupole quantization, has been intensely investigated very recently. However, the tight-binding model proposed for such emergent topological insulator
We consider extended Hubbard models with repulsive interactions on a Honeycomb lattice and the transitions from the semi-metal phase at half-filling to Mott insulating phases. In particular, due to the frustrating nature of the second-neighbor repuls