ﻻ يوجد ملخص باللغة العربية
Diffusiophoresis, a ubiquitous phenomenon that induces particle transport whenever solute concentration gradients are present, was recently observed in the context of microsystems and shown to strongly impact colloidal transport (patterning and mixing) at such scales. In the present work, we show experimentally that this nanoscale mechanism can induce changes in the macroscale mixing of colloids by chaotic advection. Rather than the decay of the standard deviation of concentration, which is a global parameter commonly employed in studies of mixing, we instead use multiscale tools adapted from studies of chaotic flows or intermittent turbulent mixing: concentration spectra and second and fourth moments of the probability density functions of scalar gradients. Not only can these tools be used in open flows, but they also allow for scale-by-scale analysis. Strikingly, diffusiophoresis is shown to affect all scales, although more particularly the small ones, resulting in a change of scalar intermittency and in an unusual scale bridging spanning more than seven orders of magnitude. By quantifying the averaged impact of diffusiophoresis on the macroscale mixing, we explain why the effects observed are consistent with the introduction of an effective Peclet number.
We study the joint mixing of colloids and salt released together in a stagnation point or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing time is strongly modified depending on the sign of the diffusiophoretic coeffici
We investigate experimentally and theoretically diffusiophoretic separation of negatively charged particles in a rectangular channel flow, driven by CO2 dissolution from one side-wall. Since the negatively charged particles create an exclusion zone n
Classical machine learning frameworks assume access to a possibly large dataset in order to train a predictive model. In many practical applications however, data does not arrive all at once, but in batches over time. This creates a natural trade-off
By synergistically combining modeling, simulation and experiments, we show that there exists a regime of self-propulsion in which the inertia in the fluid dynamics can be separated from that of the swimmer. This is demonstrated by the motion of an as
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasti