ﻻ يوجد ملخص باللغة العربية
We study the joint mixing of colloids and salt released together in a stagnation point or in a globally chaotic flow. In the presence of salt inhomogeneities, the mixing time is strongly modified depending on the sign of the diffusiophoretic coefficient $D_mathrm{dp}$. Mixing is delayed when $D_mathrm{dp}>0$ (salt-attracting configuration), or faster when $D_mathrm{dp}<0$ (salt-repelling configuration). In both configurations, as for molecular diffusion alone, large scales are barely affected in the dilating direction while the Batchelor scale for the colloids, $ell_{c,mathrm{diff}}$, is strongly modified by diffusiophoresis. We propose here to measure a global effect of diffusiophoresis in the mixing process through an effective Peclet number built on this modified Batchelor scale. Whilst this small scale is obtained analytically for the stagnation point, in the case of chaotic advection, we derive it using the equation of gradients of concentration, following Raynal & Gence (textit{Intl J. Heat Mass Transfer}, vol. 40 (14), 1997, pp. 3267--3273). Comparing to numerical simulations, we show that the mixing time can be predicted by using the same function as in absence of salt, but as a function of the effective Peclet numbers computed for each configuration. The approach is shown to be valid when the ratio $D_mathrm{dp}^2/D_s D_c gg 1$, where $D_c$ and $D_s$ are the diffusivities of the colloids and salt.
Diffusiophoresis, a ubiquitous phenomenon that induces particle transport whenever solute concentration gradients are present, was recently observed in the context of microsystems and shown to strongly impact colloidal transport (patterning and mixin
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g. algal blooms) and industrial (e.g. biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspens
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasti
Recent studies show that spherical motile micro-organisms in turbulence subject to gravitational torques gather in down-welling regions of the turbulent flow. By analysing a statistical model we analytically compute how shape affects the dynamics, pr
A lipid coated bubble (LCB) oscillator is a very interesting non-smooth oscillator with many important applications ranging from industry and chemistry to medicine. However, due to the complex behavior of the coating intermixed with the nonlinear beh