ترغب بنشر مسار تعليمي؟ اضغط هنا

CO2-driven diffusiophoresis and water cleaning: Similarity solutions for predicting the exclusion zone in a channel flow

223   0   0.0 ( 0 )
 نشر من قبل Suin Shim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate experimentally and theoretically diffusiophoretic separation of negatively charged particles in a rectangular channel flow, driven by CO2 dissolution from one side-wall. Since the negatively charged particles create an exclusion zone near the boundary where CO2 is introduced, we model the problem by applying a shear flow approximation in a two-dimensional configuration. From the form of the equations we define a similarity variable to transform the reaction-diffusion equations for CO2 and ions and the advection-diffusion equation for the particle distribution to ordinary differential equations. The definition of the similarity variable suggests a characteristic length scale for the particle exclusion zone. We consider height-averaged flow behaviors in rectangular channels to rationalize and connect our experimental observations with the model, by calculating the wall shear rate as functions of channel dimensions. Our observations and the theoretical model provide the design parameters such as flow speed, channel dimensions and CO2 pressure for the in-flow water cleaning systems.



قيم البحث

اقرأ أيضاً

We study flow driven through a finite-length planar rigid channel by a fixed upstream flux, where a segment of one wall is replaced by a pre-stressed elastic beam subject to uniform external pressure. The steady and unsteady systems are solved using a finite element method. Previous studies have shown that the system can exhibit three steady states for some parameters (termed the upper, intermediate and lower steady branches, respectively). Of these, the intermediate branch is always unstable while the upper and lower steady branches can (independently) become unstable to self-excited oscillations. We show that for some parameter combinations the system is unstable to both upper and lower branch oscillations simultaneously. However, we show that these two instabilities eventually merge together for large enough Reynolds numbers, exhibiting a nonlinear limit cycle which retains characteristics of both the upper and lower branches of oscillations. Furthermore, we show that increasing the beam pre-tension suppresses the region of multiple steady states but preserves the onset of oscillations. Conversely, increasing the beam thickness (a proxy for increasing bending stiffness) suppresses both multiple steady states and the onset of oscillations.
We derive an expression for the velocity profile of a pressure-driven yield-stress fluid flow-ing around a two-dimensional concentric annulus. This result allows the prediction of the effects of channel curvature on the pressure gradient required to initiate flow for given yield stress, and for the width of the plug region and the flux through the channel at different curvatures. We use it to validate numerical simulations of the flow from a straight channel into a curved channel which show how the fluid first yields everywhere before reaching the predicted velocity profile.
88 - Luoqin Liu 2020
How to determine accurately and efficiently the aerodynamic forces of the aircraft in high-speed flow is one of great challenges in modern aerodynamics. In this Letter we propose a new similarity law for steady transonic-supersonic flow over thin bod ies. The new similarity law is based on the local Mach number frozen principle. It depends on both the specific heat ratio and the free-stream Mach number. The new similarity law enables one to determine the lift and drag coefficients of the aircraft from that of a reference state which is more reachable. The validity of the new similarity law has been confirmed by the excellent agreement with numerical simulations of both two-dimensional airfoil flows and three-dimensional wing flows.
Diffusiophoresis, a ubiquitous phenomenon that induces particle transport whenever solute concentration gradients are present, was recently observed in the context of microsystems and shown to strongly impact colloidal transport (patterning and mixin g) at such scales. In the present work, we show experimentally that this nanoscale mechanism can induce changes in the macroscale mixing of colloids by chaotic advection. Rather than the decay of the standard deviation of concentration, which is a global parameter commonly employed in studies of mixing, we instead use multiscale tools adapted from studies of chaotic flows or intermittent turbulent mixing: concentration spectra and second and fourth moments of the probability density functions of scalar gradients. Not only can these tools be used in open flows, but they also allow for scale-by-scale analysis. Strikingly, diffusiophoresis is shown to affect all scales, although more particularly the small ones, resulting in a change of scalar intermittency and in an unusual scale bridging spanning more than seven orders of magnitude. By quantifying the averaged impact of diffusiophoresis on the macroscale mixing, we explain why the effects observed are consistent with the introduction of an effective Peclet number.
In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plast ic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified. To go beyond a limitation of the experiments, namely the presence of wall friction which complicates the relation between shear stress and shear rate, we compare the experiments with simulations of emulsion droplets based on the lattice-Boltzmann method, which are performed both with, and without, wall friction. Our results indicate a correlation between the localisation length of the velocity profiles and the localisation length of the number of plastic events. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correlation with the underlying local shear strain. These features, not previously reported for a confined foam, lend further support to the idea that cooperativity mechanisms, originally invoked for concentrated emulsions (Goyon et al. 2008), have parallels in the behaviour of other soft-glassy materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا