ﻻ يوجد ملخص باللغة العربية
In this note we apply the billiard technique to deduce some results on Viterbos conjectured inequality between volume of a convex body and its symplectic capacity. We show that the product of a permutohedron and a simplex (properly related to each other) delivers equality in Viterbos conjecture. Using this result as well as previously known equality cases, we prove some special cases of Viterbos conjecture and interpret them as isoperimetric-like inequalities for billiard trajectories.
We study some particular cases of Viterbos conjecture relating volumes of convex bodies and actions of closed characteristics on their boundaries, focusing on the case of a Hamiltonian of classical mechanical type, splitting into summands depending o
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
A well-known family of determinantal inequalities for mixed volumes of convex bodies were derived by Shephard from the Alexandrov-Fenchel inequality. The classic monograph Geometric Inequalities by Burago and Zalgaller states a conjecture on the vali
We study a coarse homology theory with prescribed growth conditions. For a finitely generated group G with the word length metric this homology theory turns out to be related to amenability of G. We characterize vanishing of a certain fundamental cla
This paper reviews many of the known inequalities for the eigenvalues of the Laplacian and bi-Laplacian on bounded domains in Euclidean space. In particular, we focus on isoperimetric inequalities for the low eigenvalues of the Dirichlet and Neumann