ترغب بنشر مسار تعليمي؟ اضغط هنا

Shephards inequalities, Hodge-Riemann relations, and a conjecture of Fedotov

99   0   0.0 ( 0 )
 نشر من قبل Ramon van Handel
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ramon van Handel




اسأل ChatGPT حول البحث

A well-known family of determinantal inequalities for mixed volumes of convex bodies were derived by Shephard from the Alexandrov-Fenchel inequality. The classic monograph Geometric Inequalities by Burago and Zalgaller states a conjecture on the validity of higher-order analogues of Shephards inequalities, which is attributed to Fedotov. In this note we disprove Fedotovs conjecture by showing that it contradicts the Hodge-Riemann relations for simple convex polytopes. Along the way, we make some expository remarks on the linear algebraic and geometric aspects of these inequalities.



قيم البحث

اقرأ أيضاً

64 - Alexey Balitskiy 2015
In this note we apply the billiard technique to deduce some results on Viterbos conjectured inequality between volume of a convex body and its symplectic capacity. We show that the product of a permutohedron and a simplex (properly related to each ot her) delivers equality in Viterbos conjecture. Using this result as well as previously known equality cases, we prove some special cases of Viterbos conjecture and interpret them as isoperimetric-like inequalities for billiard trajectories.
A carpet is a metric space homeomorphic to the Sierpinski carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincare inequalities. Our results yield ne w examples of compact doubling metric measure spaces supporting Poincare inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.
129 - Xian-Tao Huang 2021
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
This paper extends the nonabelian Hodge correspondence for Kaehler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known resu lts, especially the Donaldson-Uhlenbeck-Yau theorem and Corlettes theorem, can be applied in our setting. Though not necessarily Kaehler, we show that the Sampson-Siu Theorem proving that harmonic maps are pluriharmonic remains valid for a slightly smaller class by using the known argument. Special important examples include those balanced metrics arising from multipolarizations.
121 - Genival da Silva Jr 2021
The Hodge conjecture is a major open problem in complex algebraic geometry. In this survey, we discuss the main cases where the conjecture is known, and also explain an approach by Griffiths-Green to solve the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا