ﻻ يوجد ملخص باللغة العربية
We study a coarse homology theory with prescribed growth conditions. For a finitely generated group G with the word length metric this homology theory turns out to be related to amenability of G. We characterize vanishing of a certain fundamental class in our homology in terms of an isoperimetric inequality on G and show that on any group at most linear control is needed for this class to vanish. The latter is a homological version of the classical Burnside problem for infinite groups, with a positive solution. As applications we characterize existence of primitives of the volume form with prescribed growth and show that coarse homology classes obstruct weighted Poincare inequalities.
We prove that a plane domain which is almost isoperimetric (with respect to the $L^1$ metric) is close to a square whose sides are parallel to the coordinates axis. Closeness is measured either by $L^infty$ Haussdorf distance or Fraenkel asymmetry. I
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
This paper reviews many of the known inequalities for the eigenvalues of the Laplacian and bi-Laplacian on bounded domains in Euclidean space. In particular, we focus on isoperimetric inequalities for the low eigenvalues of the Dirichlet and Neumann
We establish lower bounds on the dimensions in which arithmetic groups with torsion can act on acyclic manifolds and homology spheres. The bounds rely on the existence of elementary p-groups in the groups concerned. In some cases, including Sp(2n,Z),
In this note we apply the billiard technique to deduce some results on Viterbos conjectured inequality between volume of a convex body and its symplectic capacity. We show that the product of a permutohedron and a simplex (properly related to each ot