ﻻ يوجد ملخص باللغة العربية
Many metals display resistivity saturation - a substantial decrease in the slope of the resistivity as a function of temperature, that occurs when the electron scattering rate $tau^{-1}$ becomes comparable to the Fermi energy $E_F/hbar$ (the Mott-Ioffe-Regel limit). At such temperatures, the usual description of a metal in terms of ballistically propagating quasiparticles is no longer valid. We present a tractable model of a large $N$ number of electronic bands coupled to $N^2$ optical phonon modes, which displays a crossover behavior in the resistivity at temperatures where $tau^{-1}sim E_F/hbar$. At low temperatures, the resistivity obeys the familiar linear form, while at high temperatures, the resistivity still increases linearly, but with a modified slope (that can be either lower or higher than the low-temperature slope, depending on the band structure). The high temperature non-Boltzmann regime is interpreted by considering the diffusion constant and the compressibility, both of which scale as the inverse square root of the temperature.
We present high-resolution thermal diffusivity measurements on several near optimally doped electron- and hole-doped cuprate systems in a temperature range that passes through the Mott-Ioffe-Regel limit, above which the quasiparticle picture fails. O
The absence of resistivity saturation in many strongly correlated metals, including the high-temperature superconductors, is critically examined from the viewpoint of optical conductivity measurements. Coherent quasiparticle conductivity, in the form
We establish a phase diagram of a model in which scalar waves are scattered by resonant point scatterers pinned at random positions in the free three-dimensional (3D) space. A transition to Anderson localization takes place in a narrow frequency band
We consider diffusion of vibrations in 3d harmonic lattices with strong force-constant disorder. Above some frequency w_IR, corresponding to the Ioffe-Regel crossover, notion of phonons becomes ill defined. They cannot propagate through the system an
The efficiency of optical emitters can be dramatically enhanced by reducing the effective mode volume (the Purcell effect). Here we predict an analogous enhancement for electron-phonon (el-ph) scattering, achieved by compressing the electronic Wannie