ﻻ يوجد ملخص باللغة العربية
The efficiency of optical emitters can be dramatically enhanced by reducing the effective mode volume (the Purcell effect). Here we predict an analogous enhancement for electron-phonon (el-ph) scattering, achieved by compressing the electronic Wannier orbitals. Reshaping of Wannier orbitals is a prominent effect in graphene moire superlattices (SLs) where the orbitals are tunable by the twist angle. A reduction of the orbital effective volume leads to an enhancement in the effective el-ph coupling strength, yielding the values considerably bigger than those known for pristine monolayer graphene. The enhanced coupling boosts the el-ph scattering rates, pushing them above the values predicted from the enhanced spectral density of electronic excitations. The enhanced phonon emission and scattering rates are manifest in the observables such as electron-lattice cooling and the linear-$T$ resistivity, both of which are directly tunable by the moire twist angle.
We present a combined theoretical approach to study the nonequilibrium transport properties of nanoscale systems coupled to metallic electrodes and exhibiting strong electron-phonon interactions. We use the Keldysh Green function formalism to general
The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is curren
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I fin
The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A1g phonon evident by a