ﻻ يوجد ملخص باللغة العربية
We establish a phase diagram of a model in which scalar waves are scattered by resonant point scatterers pinned at random positions in the free three-dimensional (3D) space. A transition to Anderson localization takes place in a narrow frequency band near the resonance frequency provided that the number density of scatterers $rho$ exceeds a critical value $rho_c simeq 0.08 k_0^{3}$, where $k_0$ is the wave number in the free space. The localization condition $rho > rho_c$ can be rewritten as $k_0 ell_0 < 1$, where $ell_0$ is the on-resonance mean free path in the independent-scattering approximation. At mobility edges, the decay of the average amplitude of a monochromatic plane wave is not purely exponential and the growth of its phase is nonlinear with the propagation distance. This makes it impossible to define the mean free path $ell$ and the effective wave number $k$ in a usual way. If the latter are defined as an effective decay length of the intensity and an effective growth rate of the phase of the average wave field, the Ioffe-Regel parameter $(kell)_c$ at the mobility edges can be calculated and takes values from 0.3 to 1.2 depending on $rho$. Thus, the Ioffe-Regel criterion of localization $kell < (kell)_c = mathrm{const} sim 1$ is valid only qualitatively and cannot be used as a quantitative condition of Anderson localization in 3D.
We show that viscoelastic effects play a crucial role in the damping of vibrational modes in harmonic amorphous solids. The relaxation of a given plane wave is described by a memory function of a semi-infinite one-dimensions mass-spring chain. The in
We consider diffusion of vibrations in 3d harmonic lattices with strong force-constant disorder. Above some frequency w_IR, corresponding to the Ioffe-Regel crossover, notion of phonons becomes ill defined. They cannot propagate through the system an
The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor and energy diffusivity with exact diagonalization of the dynamical matrix and the Kernel Polynomial
We present a random matrix approach to study general vibrational properties of stable amorphous solids with translational invariance using the correlated Wishart ensemble. Within this approach, both analytical and numerical methods can be applied. Us
We study two coupled 3D lattices, one of them featuring uncorrelated on-site disorder and the other one being fully ordered, and analyze how the interlattice hopping affects the localization-delocalization transition of the former and how the latter