ﻻ يوجد ملخص باللغة العربية
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein condensation survives in a generalized form: the unambiguous selection of an odd number of states acquiring large occupations. Within mean-field theory we derive a criterion for when a single and when multiple states are Bose selected in a non-interacting gas. We study the effect in several driven-dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between one and three selected states.
A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical
The universal critical behavior of the driven-dissipative non-equilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven o
Coherence is a defining feature of quantum condensates. These condensates are inherently multimode phenomena and in the macroscopic limit it becomes extremely difficult to resolve populations of individual modes and the coherence between them. In thi
In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We s
We study the effects of dissipative boundaries in many-body systems at continuous quantum transitions, when the parameters of the Hamiltonian driving the unitary dynamics are close to their critical values. As paradigmatic models, we consider fermion