ﻻ يوجد ملخص باللغة العربية
The problem of finding a microscopic theory of phase transitions across a critical point is a central unsolved problem in theoretical physics. We find a general solution to that problem and present it here for the cases of Bose-Einstein condensation in an interacting gas and ferromagnetism in a lattice of spins, interacting via a Heisenberg or Ising Hamiltonian. For Bose-Einstein condensation, we present the exact, valid for the entire critical region, equations for the Green functions and order parameter, that is a critical-region extension of the Beliaev-Popov and Gross-Pitaevskii equations. For the magnetic phase transition, we find an exact theory in terms of constrained bosons in a lattice and obtain similar equations for the Green functions and order parameter. In particular, we outline an exact solution for the three-dimensional Ising model.
We present a microscopic theory of the second order phase transition in an interacting Bose gas that allows one to describe formation of an ordered condensate phase from a disordered phase across an entire critical region continuously. We derive the
(abridged) In this paper, we present the issues we consider as essential as far as the statistical mechanics of finite systems is concerned. In particular, we emphasis our present understanding of phase transitions in the framework of information the
We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches from a dimerized state to a ferromagnetic
We study the quantum phase transition from a super solid phase to a solid phase of rho = 1/2 for the extended Bose-Hubbard model on the honeycomb lattice using first principles Monte Carlo calculations. The motivation of our study is to quantitativel
We investigate the dynamics of a conservative version of Conways Game of Life, in which a pair consisting of a dead and a living cell can switch their states following Conways rules but only by swapping their positions, irrespective of their mutual d