ﻻ يوجد ملخص باللغة العربية
The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor and energy diffusivity with exact diagonalization of the dynamical matrix and the Kernel Polynomial Method which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivitys increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 AA{} (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity.
We present a random matrix approach to study general vibrational properties of stable amorphous solids with translational invariance using the correlated Wishart ensemble. Within this approach, both analytical and numerical methods can be applied. Us
We show that viscoelastic effects play a crucial role in the damping of vibrational modes in harmonic amorphous solids. The relaxation of a given plane wave is described by a memory function of a semi-infinite one-dimensions mass-spring chain. The in
We consider diffusion of vibrations in 3d harmonic lattices with strong force-constant disorder. Above some frequency w_IR, corresponding to the Ioffe-Regel crossover, notion of phonons becomes ill defined. They cannot propagate through the system an
We establish a phase diagram of a model in which scalar waves are scattered by resonant point scatterers pinned at random positions in the free three-dimensional (3D) space. A transition to Anderson localization takes place in a narrow frequency band
The inelastic scattering intensities of glasses and amorphous materials has a maximum at a low frequency, the so called Boson peak. Under applied hydrostatic pressure, $P$, the Boson peak frequency, $omega_{rm b}$, is shifted upwards. We have shown p