ﻻ يوجد ملخص باللغة العربية
We introduce a stochastic sandwich method with low-mode substitution to evaluate the connected three-point functions. The isovector matrix elements of the nucleon for the axial-vector coupling $g_A^3$, scalar couplings $g_S^3$ and the quark momentum fraction $langle xrangle_{u -d}$ are calculated with overlap fermion on 2+1 flavor domain-wall configurations on a $24^3 times 64$ lattice at $m_{pi} = 330$ MeV with lattice spacing $a = 0.114$ fm.
We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approx
The nucleon decay matrix elements of three-quark operators are calculated with domain-wall fermions. Operators are renormalized non-perturbatively to match the MS bar (NDR) scheme at NLO. Quenched simulation studies involve both direct measurement of
We report a lattice calculation of nucleon forward matrix elements on a $48^3 times 96$ lattice at the physical pion mass and a spatial size of 5.5 fm. The $2+1$ flavor dynamical fermion configurations are generated with domain-wall fermions (DWF) an
We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational c