ﻻ يوجد ملخص باللغة العربية
Yield stress fluids display complex dynamics, in particular when driven into the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesocale elasto-plastic descriptions to analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics.
It is known by now that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus which exists, all the higher order coefficients do not exist in the thermodynamic limit. Here we show that the same p
We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displac
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency we observe a re-e
We develop an elasto-plastic description for the transient dynamics prior to steady flow of athermally yielding materials. Our mean-field model not only reproduces the experimentally observed non-linear time dependence of the shear-rate response to a
This is the second paper devoted to energetic rigidity, in which we apply our formalism to examples in two dimensions: underconstrained random regular spring networks, vertex models, and jammed packings of soft particles. Spring networks and vertex m