ﻻ يوجد ملخص باللغة العربية
The hierarchy of classical Chinese poetry has been broadly acknowledged by a number of studies in Chinese literature. However, quantitative investigations about the evolutionary linkages of classical Chinese poetry are limited. The primary goal of this study is to provide quantitative evidence of the evolutionary linkages, with emphasis on character usage, among different period genres of classical Chinese poetry. Specifically, various statistical analyses are performed to find and compare the patterns of character usage in the poems of nine period genres, including shi jing, chu ci, Han shi , Jin shi, Tang shi, Song shi, Yuan shi, Ming shi, and Qing shi. The result of analysis indicates that each of nine period genres has unique patterns of character usage, with some Chinese characters that are preferably used in the poems of a particular period genre. The analysis on the general pattern of character preference implies a decreasing trend in the use of Chinese characters that rarely occur in modern Chinese literature along the timeline of dynastic types of classical Chinese poetry. The phylogenetic analysis based on the distance matrix suggests that the evolutionary linkages of different types of classical Chinese poetry are congruent with their chronological order, suggesting that character frequencies contain phylogenetic information that is useful for inferring evolutionary linkages among various types of classical Chinese poetry. The estimated phylogenetic tree identifies four groups (shi jing, chu ci), (Han shi, Jin shi), (Tang shi, Song shi, Yuan shi), and (Ming shi, Qing shi). The statistical analyses conducted in this study can be generalized to analyze the data sets of general Chinese literature. Such analyses can provide quantitative insights about the evolutionary linkages of general Chinese literature.
Poetry is one of the most important art forms of human languages. Recently many studies have focused on incorporating some linguistic features of poetry, such as style and sentiment, into its understanding or generation system. However, there is no f
Recently, many works have tried to augment the performance of Chinese named entity recognition (NER) using word lexicons. As a representative, Lattice-LSTM (Zhang and Yang, 2018) has achieved new benchmark results on several public Chinese NER datase
Recent studies in sequence-to-sequence learning demonstrate that RNN encoder-decoder structure can successfully generate Chinese poetry. However, existing methods can only generate poetry with a given first line or users intent theme. In this paper,
The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the history of word-usage earlier in that sentence. We study a simple history-dependent model
This report summarizes the results of a short-term student research project focused on the usage of Swedish Wikipedia. It is trying to answer the following question: To what extent (and why) do people from non-English language communities use the Eng