ترغب بنشر مسار تعليمي؟ اضغط هنا

Simplify the Usage of Lexicon in Chinese NER

86   0   0.0 ( 0 )
 نشر من قبل Ruotian Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, many works have tried to augment the performance of Chinese named entity recognition (NER) using word lexicons. As a representative, Lattice-LSTM (Zhang and Yang, 2018) has achieved new benchmark results on several public Chinese NER datasets. However, Lattice-LSTM has a complex model architecture. This limits its application in many industrial areas where real-time NER responses are needed. In this work, we propose a simple but effective method for incorporating the word lexicon into the character representations. This method avoids designing a complicated sequence modeling architecture, and for any neural NER model, it requires only subtle adjustment of the character representation layer to introduce the lexicon information. Experimental studies on four benchmark Chinese NER datasets show that our method achieves an inference speed up to 6.15 times faster than those of state-ofthe-art methods, along with a better performance. The experimental results also show that the proposed method can be easily incorporated with pre-trained models like BERT.



قيم البحث

اقرأ أيضاً

57 - Dou Hu , Lingwei Wei 2020
Although character-based models using lexicon have achieved promising results for Chinese named entity recognition (NER) task, some lexical words would introduce erroneous information due to wrongly matched words. Existing researches proposed many st rategies to integrate lexicon knowledge. However, they performed with simple first-order lexicon knowledge, which provided insufficient word information and still faced the challenge of matched word boundary conflicts; or explored the lexicon knowledge with graph where higher-order information introducing negative words may disturb the identification. To alleviate the above limitations, we present new insight into second-order lexicon knowledge (SLK) of each character in the sentence to provide more lexical word information including semantic and word boundary features. Based on these, we propose a SLK-based model with a novel strategy to integrate the above lexicon knowledge. The proposed model can exploit more discernible lexical words information with the help of global context. Experimental results on three public datasets demonstrate the validity of SLK. The proposed model achieves more excellent performance than the state-of-the-art comparison methods.
Online sexism has become an increasing concern in social media platforms as it has affected the healthy development of the Internet and can have negative effects in society. While research in the sexism detection domain is growing, most of this resea rch focuses on English as the language and on Twitter as the platform. Our objective here is to broaden the scope of this research by considering the Chinese language on Sina Weibo. We propose the first Chinese sexism dataset -- Sina Weibo Sexism Review (SWSR) dataset --, as well as a large Chinese lexicon SexHateLex made of abusive and gender-related terms. We introduce our data collection and annotation process, and provide an exploratory analysis of the dataset characteristics to validate its quality and to show how sexism is manifested in Chinese. The SWSR dataset provides labels at different levels of granularity including (i) sexism or non-sexism, (ii) sexism category and (iii) target type, which can be exploited, among others, for building computational methods to identify and investigate finer-grained gender-related abusive language. We conduct experiments for the three sexism classification tasks making use of state-of-the-art machine learning models. Our results show competitive performance, providing a benchmark for sexism detection in the Chinese language, as well as an error analysis highlighting open challenges needing more research in Chinese NLP. The SWSR dataset and SexHateLex lexicon are publicly available.
79 - Jiatong Li , Kui Meng 2021
Pre-trained language models lead Named Entity Recognition (NER) into a new era, while some more knowledge is needed to improve their performance in specific problems. In Chinese NER, character substitution is a complicated linguistic phenomenon. Some Chinese characters are quite similar for sharing the same components or having similar pronunciations. People replace characters in a named entity with similar characters to generate a new collocation but referring to the same object. It becomes even more common in the Internet age and is often used to avoid Internet censorship or just for fun. Such character substitution is not friendly to those pre-trained language models because the new collocations are occasional. As a result, it always leads to unrecognizable or recognition errors in the NER task. In this paper, we propose a new method, Multi-Feature Fusion Embedding for Chinese Named Entity Recognition (MFE-NER), to strengthen the language pattern of Chinese and handle the character substitution problem in Chinese Named Entity Recognition. MFE fuses semantic, glyph, and phonetic features together. In the glyph domain, we disassemble Chinese characters into components to denote structure features so that characters with similar structures can have close embedding space representation. Meanwhile, an improved phonetic system is also proposed in our work, making it reasonable to calculate phonetic similarity among Chinese characters. Experiments demonstrate that our method improves the overall performance of Chinese NER and especially performs well in informal language environments.
90 - Liang Liu , Lili Yu 2015
The hierarchy of classical Chinese poetry has been broadly acknowledged by a number of studies in Chinese literature. However, quantitative investigations about the evolutionary linkages of classical Chinese poetry are limited. The primary goal of th is study is to provide quantitative evidence of the evolutionary linkages, with emphasis on character usage, among different period genres of classical Chinese poetry. Specifically, various statistical analyses are performed to find and compare the patterns of character usage in the poems of nine period genres, including shi jing, chu ci, Han shi , Jin shi, Tang shi, Song shi, Yuan shi, Ming shi, and Qing shi. The result of analysis indicates that each of nine period genres has unique patterns of character usage, with some Chinese characters that are preferably used in the poems of a particular period genre. The analysis on the general pattern of character preference implies a decreasing trend in the use of Chinese characters that rarely occur in modern Chinese literature along the timeline of dynastic types of classical Chinese poetry. The phylogenetic analysis based on the distance matrix suggests that the evolutionary linkages of different types of classical Chinese poetry are congruent with their chronological order, suggesting that character frequencies contain phylogenetic information that is useful for inferring evolutionary linkages among various types of classical Chinese poetry. The estimated phylogenetic tree identifies four groups (shi jing, chu ci), (Han shi, Jin shi), (Tang shi, Song shi, Yuan shi), and (Ming shi, Qing shi). The statistical analyses conducted in this study can be generalized to analyze the data sets of general Chinese literature. Such analyses can provide quantitative insights about the evolutionary linkages of general Chinese literature.
96 - Meichun Jiao , Ziyang Luo 2021
Gender bias in word embeddings gradually becomes a vivid research field in recent years. Most studies in this field aim at measurement and debiasing methods with English as the target language. This paper investigates gender bias in static word embed dings from a unique perspective, Chinese adjectives. By training word representations with different models, the gender bias behind the vectors of adjectives is assessed. Through a comparison between the produced results and a human-scored data set, we demonstrate how gender bias encoded in word embeddings differentiates from peoples attitudes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا