ترغب بنشر مسار تعليمي؟ اضغط هنا

A Multi-Modal Chinese Poetry Generation Model

92   0   0.0 ( 0 )
 نشر من قبل Dayiheng Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies in sequence-to-sequence learning demonstrate that RNN encoder-decoder structure can successfully generate Chinese poetry. However, existing methods can only generate poetry with a given first line or users intent theme. In this paper, we proposed a three-stage multi-modal Chinese poetry generation approach. Given a picture, the first line, the title and the other lines of the poem are successively generated in three stages. According to the characteristics of Chinese poems, we propose a hierarchy-attention seq2seq model which can effectively capture character, phrase, and sentence information between contexts and improve the symmetry delivered in poems. In addition, the Latent Dirichlet allocation (LDA) model is utilized for title generation and improve the relevance of the whole poem and the title. Compared with strong baseline, the experimental results demonstrate the effectiveness of our approach, using machine evaluations as well as human judgments.



قيم البحث

اقرأ أيضاً

Poetry generation has been a difficult task in natural language processing. Unlike plain neural text generation tasks, poetry has a high requirement for novelty, since an easily-understood sentence with too many high frequency words might not be cons idered as poetic, while adequately ambiguous sentences with low frequency words can possibly be novel and creative. Inspired by this, we present Lingxi, a diversity-aware Chinese modern poetry generation system. We propose nucleus sampling with randomized head (NS-RH) algorithm, which randomizes the high frequency part (head) of the predicted distribution, in order to emphasize on the comparatively low frequency words. The proposed algorithm can significantly increase the novelty of generated poetry compared with traditional sampling methods. The permutation of distribution is controllable by tuning the filtering parameter that determines the head to permutate, achieving diversity-aware sampling. We find that even when a large portion of filtered vocabulary is randomized, it can actually generate fluent poetry but with notably higher novelty. We also propose a semantic-similarity-based rejection sampling algorithm, which creates longer and more informative context on the basis of the short input poetry title while maintaining high semantic similarity to the title, alleviating the off-topic issue.
Poetry is one of the most important art forms of human languages. Recently many studies have focused on incorporating some linguistic features of poetry, such as style and sentiment, into its understanding or generation system. However, there is no f ocus on understanding or evaluating the semantics of poetry. Therefore, we propose a novel task to assess a models semantic understanding of poetry by poem matching. Specifically, this task requires the model to select one line of Chinese classical poetry among four candidates according to the modern Chinese translation of a line of poetry. To construct this dataset, we first obtain a set of parallel data of Chinese classical poetry and modern Chinese translation. Then we retrieve similar lines of poetry with the lines in a poetry corpus as negative choices. We name the dataset Chinese Classical Poetry Matching Dataset (CCPM) and release it at https://github.com/THUNLP-AIPoet/CCPM. We hope this dataset can further enhance the study on incorporating deep semantics into the understanding and generation system of Chinese classical poetry. We also preliminarily run two variants of BERT on this dataset as the baselines for this dataset.
110 - Lei Shen , Xiaoyu Guo , Meng Chen 2020
Chinese poetry is an important part of worldwide culture, and classical and modern sub-branches are quite different. The former is a unique genre and has strict constraints, while the latter is very flexible in length, optional to have rhymes, and si milar to modern poetry in other languages. Thus, it requires more to control the coherence and improve the novelty. In this paper, we propose a generate-retrieve-then-refine paradigm to jointly improve the coherence and novelty. In the first stage, a draft is generated given keywords (i.e., topics) only. The second stage produces a refining vector from retrieval lines. At last, we take into consideration both the draft and the refining vector to generate a new poem. The draft provides future sentence-level information for a line to be generated. Meanwhile, the refining vector points out the direction of refinement based on impressive words detection mechanism which can learn good patterns from references and then create new ones via insertion operation. Experimental results on a collected large-scale modern Chinese poetry dataset show that our proposed approach can not only generate more coherent poems, but also improve the diversity and novelty.
Color is an essential component of graphic design, acting not only as a visual factor but also carrying cultural implications. However, existing research on algorithmic color palette generation and colorization largely ignores the cultural aspect. In this paper, we contribute to this line of research by first constructing a unique color dataset inspired by a specific culture, i.e., Chinese Youth Subculture (CYS), which is an vibrant and trending cultural group especially for the Gen Z population. We show that the colors used in CYS have special aesthetic and semantic characteristics that are different from generic color theory. We then develop an interactive multi-modal generative framework to create CYS-styled color palettes, which can be used to put a CYS twist on images using our automatic colorization model. Our framework is illustrated via a demo system designed with the human-in-the-loop principle that constantly provides feedback to our algorithms. User studies are also conducted to evaluate our generation results.
In this work, we propose to model the interaction between visual and textual features for multi-modal neural machine translation (MMT) through a latent variable model. This latent variable can be seen as a multi-modal stochastic embedding of an image and its description in a foreign language. It is used in a target-language decoder and also to predict image features. Importantly, our model formulation utilises visual and textual inputs during training but does not require that images be available at test time. We show that our latent variable MMT formulation improves considerably over strong baselines, including a multi-task learning approach (Elliott and Kadar, 2017) and a conditional variational auto-encoder approach (Toyama et al., 2016). Finally, we show improvements due to (i) predicting image features in addition to only conditioning on them, (ii) imposing a constraint on the minimum amount of information encoded in the latent variable, and (iii) by training on additional target-language image descriptions (i.e. synthetic data).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا