ﻻ يوجد ملخص باللغة العربية
The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotated through a right angle. Hamilton showed that for the Kepler/Coulomb problem, the hodograph is a circle whose centre is in the direction of a conserved eccentricity vector. The addition of an inverse cube law force induces the eccentricity vector to precess and with it the hodograph. The same effect is produced by a cosmic string. If one takes the relativistic momentum to define the hodograph, then for the Sommerfeld (i.e. the special relativistic Kepler/Coulomb problem) there is an effective inverse cube force which causes the hodograph to precess. If one uses Schwarzschild coordinates one may also define a a hodograph for timelike or null geodesics moving around a black hole. Iheir pedal equations are given. In special cases the hodograph may be found explicitly. For example the orbit of a photon which starts from the past singularity, grazes the horizon and returns to future singularity is a cardioid, its pedal equation is Cayleys sextic the inverse of which is Tschirhausens cubic. It is also shown that that provided one uses Beltrami coordinates, the hodograph for the non-relativistic Kepler problem on hyperbolic space is also a circle. An analogous result holds for the the round 3-sphere. In an appendix the hodograph of a particle freely moving on a group manifold equipped with a left-invariant metric is defined.
We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2
A homogeneous two-dimensional metric including the degrees of freedom of Teichmuller deformation is developed. The Teichmuller deformation is incorporated by affine stretching of complex structure. According to Yamadas investigation by pinching param
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. The
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvat
This paper studies the nature of fractional linear transformations in a general relativity context as well as in a quantum theoretical framework. Two features are found to deserve special attention: the first is the possibility of separating the limi