ﻻ يوجد ملخص باللغة العربية
In many hybrid quantum systems, a superconducting circuit is required that combines DC-control with a coplanar waveguide (CPW) microwave resonator. The strategy thus far for applying a DC voltage or current bias to microwave resonators has been to apply the bias through a symmetry point in such a way that it appears as an open circuit for certain frequencies. Here, we introduce a microwave coupler for superconducting CPW cavities in the form of a large shunt capacitance to ground. Such a coupler acts as a broadband mirror for microwaves while providing galvanic connection to the center conductor of the resonator. We demonstrate this approach with a two-port $lambda/4$-transmission resonator with linewidths in the MHz regime ($Qsim10^3$) that shows no spurious resonances and apply a voltage bias up to $80$ V without affecting the quality factor of the resonator. This resonator coupling architecture, which is simple to engineer, fabricate and analyse, could have many potential applications in experiments involving superconducting hybrid circuits.
We have generated frequency combs spanning 0.5 to 20 GHz in superconducting half wave resonators at T=3 K. Thin films of niobium-titanium nitride enabled this development due to their low loss, high nonlinearity, low frequency dispersion, and high cr
We discuss how reactive and dissipative non-linearities affect the intrinsic response of superconducting thin-film resonators. We explain how most, if not all, of the complex phenomena commonly seen can be described by a model in which the underlying
Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies and quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the m
Superconducting microwave resonators (SMR) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively
Recent experiments on strongly coupled microwave and ferromagnetic resonance modes have focused on large volume bulk crystals such as yttrium iron garnet, typically of millimeter-scale dimensions. We extend these experiments to lower volumes of magne