ترغب بنشر مسار تعليمي؟ اضغط هنا

Inequivalence of nonequilibrium path ensembles: the example of stochastic bridges

60   0   0.0 ( 0 )
 نشر من قبل Juraj Szavits Nossan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study stochastic processes in which the trajectories are constrained so that the process realises a large deviation of the unconstrained process. In particular we consider stochastic bridges and the question of inequivalence of path ensembles between the microcanonical ensemble, in which the end points of the trajectory are constrained, and the canonical or s ensemble in which a bias or tilt is introduced into the process. We show how ensemble inequivalence can be manifested by the phenomenon of temporal condensation in which the large deviation is realised in a vanishing fraction of the duration (for long durations). For diffusion processes we find that condensation happens whenever the process is subject to a confining potential, such as for the Ornstein-Uhlenbeck process, but not in the borderline case of dry friction in which there is partial ensemble equivalence. We also discuss continuous-space, discrete-time random walks for which in the case of a heavy tailed step-size distribution it is known that the large deviation may be achieved in a single step of the walk. Finally we consider possible effects of several constraints on the process and in particular give an alternative explanation of the interaction-driven condensation in terms of constrained Brownian excursions.



قيم البحث

اقرأ أيضاً

We present a detailed account of a first-order localization transition in the Discrete Nonlinear Schrodinger Equation, where the localized phase is associated to the high energy region in parameter space. We show that, due to ensemble inequivalence, this phase is thermodynamically stable only in the microcanonical ensemble. In particular, we obtain an explicit expression of the microcanonical entropy close to the transition line, located at infinite temperature. This task is accomplished making use of large-deviation techniques, that allow us to compute, in the limit of large system size, also the subleading corrections to the microcanonical entropy. These subleading terms are crucial ingredients to account for the first-order mechanism of the transition, to compute its order parameter and to predict the existence of negative temperatures in the localized phase. All of these features can be viewed as signatures of a thermodynamic phase where the translational symmetry is broken spontaneously due to a condensation mechanism yielding energy fluctuations far away from equipartition: actually they prefer to participate in the formation of nonlinear localized excitations (breathers), typically containing a macroscopic fraction of the total energy.
According to the nonequilibrium work relations, path-ensembles generated by irreversible processes in which a system is driven out of equilibrium according to a predetermined protocol may be used to compute equilibrium free energy differences and exp ectation values. Estimation has previously been improved by considering data collected from the reverse process, which starts in equilibrium in the final thermodynamic state of the forward process and is driven according to the time-reversed protocol. Here, we develop a theoretically rigorous statistical estimator for nonequilibrium path-ensemble averages specialized for symmetric protocols, in which forward and reverse processes are identical. The estimator is tested with a number of model systems: a symmetric 1D potential, an asymmetric 1D potential, the unfolding of deca-alanine, separating a host-guest system, and translocating a potassium ion through a gramicidin A ion channel. When reconstructing free energies using data from symmetric protocols, the new estimator outperforms existing rigorous unidirectional and bidirectional estimators, converging more quickly and resulting in smaller error. However, in most cases, using the bidirectional estimator with data from a forward and reverse pair of asymmetric protocols outperforms the corresponding symmetric protocol and estimator with the same amount of simulation time. Hence, the new estimator is only recommended when the bidirectional estimator is not feasible or is expected to perform poorly. The symmetric estimator has similar performance to a unidirectional protocol of half the length and twice the number of trajectories.
An approach for simulating bionanosystems, such as viruses and ribosomes, is presented. This calibration-free approach is based on an all-atom description for bionanosystems, a universal interatomic force field, and a multiscale perspective. The supr amillion-atom nature of these bionanosystems prohibits the use of a direct molecular dynamics approach for phenomena like viral structural transitions or self-assembly that develop over milliseconds or longer. A key element of these multiscale systems is the cross-talk between, and consequent strong coupling of, processes over many scales in space and time. We elucidate the role of interscale cross-talk and overcome bionanosystem simulation difficulties with automated construction of order parameters (OPs) describing supra-nanometer scale structural features, construction of OP dependent ensembles describing the statistical properties of atomistic variables that ultimately contribute to the entropies driving the dynamics of the OPs, and the derivation of a rigorous equation for the stochastic dynamics of the OPs. Since the atomic scale features of the system are treated statistically, several ensembles are constructed that reflect various experimental conditions. The theory provides a basis for a practical, quantitative bionanosystem modeling approach that preserves the cross-talk between the atomic and nanoscale features. A method for integrating information from nanotechnical experimental data in the derivation of equations of stochastic OP dynamics is also introduced.
We study the dynamics of covariances in a chain of harmonic oscillators with conservative noise in contact with two stochastic Langevin heat baths. The noise amounts to random collisions between nearest-neighbour oscillators that exchange their momen ta. In a recent paper, [S Lepri et al. J. Phys. A: Math. Theor. 42 (2009) 025001], we have studied the stationary state of this system with fixed boundary conditions, finding analytical exact expressions for the temperature profile and the heat current in the thermodynamic (continuum) limit. In this paper we extend the analysis to the evolution of the covariance matrix and to generic boundary conditions. Our main purpose is to construct a hydrodynamic description of the relaxation to the stationary state, starting from the exact equations governing the evolution of the correlation matrix. We identify and adiabatically eliminate the fast variables, arriving at a continuity equation for the temperature profile T(y,t), complemented by an ordinary equation that accounts for the evolution in the bulk. Altogether, we find that the evolution of T(y,t) is the result of fractional diffusion.
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules.We present a method to obtain path ensemble averages of a perturbed dynamics fro m a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSM) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended toreweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor on the fly during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process to an artificial many-body system and alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا