ترغب بنشر مسار تعليمي؟ اضغط هنا

Girsanov reweighting for path ensembles and Markov state models

220   0   0.0 ( 0 )
 نشر من قبل Bettina Keller
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules.We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSM) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended toreweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor on the fly during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process to an artificial many-body system and alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.



قيم البحث

اقرأ أيضاً

Markov State Models (MSM) are widely used to elucidate dynamic properties of molecular systems from unbiased Molecular Dynamics (MD). However, the implementation of reweighting schemes for MSMs to analyze biased simulations, for example produced by e nhanced sampling techniques, is still at an early stage of development. Several dynamical reweighing approaches have been proposed, which can be classified as approaches based on (i) Kramers rate theory, (ii) rescaling of the probability density flux, (iii) reweighting by formulating a likelihood function, (iv) path reweighting. We present the state-of-the-art and discuss the methodological differences of these methods, their limitations and recent applications.
We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T = 1 this approach recovers the maximum-likelihood estimator of the degree-corrected stochastic block model as a particular case, thereby enabling us to explain certain features of the likelihood landscape of this popular generative network model from a dynamical lens. We further highlight how we can uncover coherent, long-range dynamical modules for which considering a time-scale T >> 1 is essential, using synthetic flows and real-world ocean currents, where we are able to recover the fundamental features of the surface currents of the oceans.
In this work we consider information-theoretical observables to analyze short symbolic sequences, comprising time-series that represent the orientation of a single spin in a $2D$ Ising ferromagnet on a square lattice of size $L^2=128^2$, for differen t system temperatures $T$. The latter were chosen from an interval enclosing the critical point $T_{rm c}$ of the model. At small temperatures the sequences are thus very regular, at high temperatures they are maximally random. In the vicinity of the critical point, nontrivial, long-range correlations appear. Here, we implement estimators for the entropy rate, excess entropy (i.e. complexity) and multi-information. First, we implement a Lempel-Ziv string parsing scheme, providing seemingly elaborate entropy rate and multi-information estimates and an approximate estimator for the excess entropy. Furthermore, we apply easy-to-use black-box data compression utilities, providing approximate estimators only. For comparison and to yield results for benchmarking purposes we implement the information-theoretic observables also based on the well-established M-block Shannon entropy, which is more tedious to apply compared to the the first two algorithmic entropy estimation procedures. To test how well one can exploit the potential of such data compression techniques, we aim at detecting the critical point of the $2D$ Ising ferromagnet. Among the above observables, the multi-information, which is known to exhibit an isolated peak at the critical point, is very easy to replicate by means of both efficient algorithmic entropy estimation procedures. Finally, we assess how good the various algorithmic entropy estimates compare to the more conventional block entropy estimates and illustrate a simple modification that yields enhanced results.
According to the nonequilibrium work relations, path-ensembles generated by irreversible processes in which a system is driven out of equilibrium according to a predetermined protocol may be used to compute equilibrium free energy differences and exp ectation values. Estimation has previously been improved by considering data collected from the reverse process, which starts in equilibrium in the final thermodynamic state of the forward process and is driven according to the time-reversed protocol. Here, we develop a theoretically rigorous statistical estimator for nonequilibrium path-ensemble averages specialized for symmetric protocols, in which forward and reverse processes are identical. The estimator is tested with a number of model systems: a symmetric 1D potential, an asymmetric 1D potential, the unfolding of deca-alanine, separating a host-guest system, and translocating a potassium ion through a gramicidin A ion channel. When reconstructing free energies using data from symmetric protocols, the new estimator outperforms existing rigorous unidirectional and bidirectional estimators, converging more quickly and resulting in smaller error. However, in most cases, using the bidirectional estimator with data from a forward and reverse pair of asymmetric protocols outperforms the corresponding symmetric protocol and estimator with the same amount of simulation time. Hence, the new estimator is only recommended when the bidirectional estimator is not feasible or is expected to perform poorly. The symmetric estimator has similar performance to a unidirectional protocol of half the length and twice the number of trajectories.
Fitting model parameters to experimental data is a common yet often challenging task, especially if the model contains many parameters. Typically, algorithms get lost in regions of parameter space in which the model is unresponsive to changes in para meters, and one is left to make adjustments by hand. We explain this difficulty by interpreting the fitting process as a generalized interpretation procedure. By considering the manifold of all model predictions in data space, we find that cross sections have a hierarchy of widths and are typically very narrow. Algorithms become stuck as they move near the boundaries. We observe that the model manifold, in addition to being tightly bounded, has low extrinsic curvature, leading to the use of geodesics in the fitting process. We improve the convergence of the Levenberg-Marquardt algorithm by adding the geodesic acceleration to the usual Levenberg-Marquardt step.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا