ترغب بنشر مسار تعليمي؟ اضغط هنا

Faster annealing schedules for quantum annealing

166   0   0.0 ( 0 )
 نشر من قبل Satoshi Morita
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Satoshi Morita




اسأل ChatGPT حول البحث

New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation probability for quantum annealing is explicitly obtained in the limit of long annealing time. Its first-order term, which is inversely proportional to the square of the annealing time, is shown to be determined only by the information at the initial and final times. Our annealing schedules make it possible to drop this term, thus leading to a higher order (smaller) excitation probability. We verify these results by solving numerically the time-dependent Schrodinger equation for small size systems



قيم البحث

اقرأ أيضاً

Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons bet ween classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.
In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian which is gradually turned off and replaced by a longitudinal Ising Hamiltonian. The ground state of the Ising Hamiltonian encodes the solution to the compu tational problem of interest, and the state overlap with this ground state gives the success probability of the annealing protocol. The form of the annealing schedule can have a significant impact on the ground state overlap at the end of the anneal, so precise control over these annealing schedules can be a powerful tool for increasing success probabilities of annealing protocols. Here we show how superconducting circuits, in particular capacitively shunted flux qubits (CSFQs), can be used to construct quantum annealing systems by providing tools for mapping circuit flux biases to Pauli coefficients. We use this mapping to find customized annealing schedules: appropriate circuit control biases that yield a desired annealing schedule, while accounting for the physical limitations of the circuitry. We then provide examples and proposals that utilize this capability to improve quantum annealing performance.
Quantum annealing is a generic name of quantum algorithms to use quantum-mechanical fluctuations to search for the solution of optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. Th e present paper reviews the mathematical and theoretical foundation of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence both for the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.
Quantum annealing has the potential to provide a speedup over classical algorithms in solving optimization problems. Just as for any other quantum device, suppressing Hamiltonian control errors will be necessary before quantum annealers can achieve s peedups. Such analog control errors are known to lead to $J$-chaos, wherein the probability of obtaining the optimal solution, encoded as the ground state of the intended Hamiltonian, varies widely depending on the control error. Here, we show that $J$-chaos causes a catastrophic failure of quantum annealing, in that the scaling of the time-to-solution metric becomes worse than that of a deterministic (exhaustive) classical solver. We demonstrate this empirically using random Ising spin glass problems run on the two latest generations of the D-Wave quantum annealers. We then proceed to show that this doomsday scenario can be mitigated using a simple error suppression and correction scheme known as quantum annealing correction (QAC). By using QAC, the time-to-solution scaling of the same D-Wave devices is improved to below that of the classical upper bound, thus restoring hope in the speedup prospects of quantum annealing.
Recently, it was demonstrated both theoretically and experimentally on the D-Wave quantum annealer that transverse-field quantum annealing does not find all ground states with equal probability. In particular, it was proposed that more complex driver Hamiltonians beyond transverse fields might mitigate this shortcoming. Here, we investigate the mechanisms of (un)fair sampling in quantum annealing. While higher-order terms can improve the sampling for selected small problems, we present multiple counterexamples where driver Hamiltonians that go beyond transverse fields do not remove the sampling bias. Using perturbation theory we explain why this is the case. In addition, we present large-scale quantum Monte Carlo simulations for spin glasses with known degeneracy in two space dimensions and demonstrate that the fair-sampling performance of quadratic driver terms is comparable to standard transverse-field drivers. Our results suggest that quantum annealing machines are not well suited for sampling applications, unless post-processing techniques to improve the sampling are applied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا