ﻻ يوجد ملخص باللغة العربية
Within the framework of tachyon inflation, we consider different steep potentials and check their viability in light of the Planck 2015 data. We see that in this scenario, the inverse power-law potential $V(phi)=V_{0}(phi/phi_{0})^{-n}$ with $n=2$ leads to the power-law inflation with the scale factor $a(t)propto t^{q}$ where $q>1$, while with $n<2$, it gives rise to the intermediate inflation with the scale factor $a(t)proptoexpleft(At^{f}right)$ where $A>0$ and $0<f<1$. We find that, although the inverse power-law potential with $nleq 2$ is completely ruled out by the Planck 2015 data, the result of this potential for $n>2$ can be compatible with the 95% CL region of Planck 2015 TT, TE, EE+lowP data. We further conclude that the exponential potential $V(phi)=V_{0}e^{-phi/phi_{0}}$, the inverse $cosh$ potential $V(phi)=V_{0}/cosh(phi/phi_{0})$, and the mutated exponential potential $V(phi)=V_{0}left[1+(n-1)^{-(n-1)}(phi/phi_{0})^{n}right]e^{-phi/phi_{0}}$ with $n=4$, can be consistent with the 95% CL region of Planck 2015 TT, TE, EE+lowP data. Moreover, using the $r-n_s$ constraints on the model parameters, we also estimate the running of the scalar spectral index $dn_{s}/dln k$ and the local non-Gaussianity parameter $f_{{rm NL}}^{{rm local}}$. We find that the lower and upper bounds evaluated for these observables are compatible with the Planck 2015 results.
We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of $e$-folds before the end of inflation. Using the relation between the observables like $n_s$ a
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap
We briefly study the dynamics at classical level of the Carrollian limit, with vanishing speed of light and no possible propagation of signals, for a simply effective action in a flat space with a open string tachyon as scalar field. The canonical an
The dynamics of closed scalar field FRW cosmological models is studied for several types of exponentially and more than exponentially steep potentials. The parameters of scalar field potentials which allow a chaotic behaviour are found from numerical
We study tachyon inflation within the large-$N$ formalism, which takes a prescription for the small Hubble flow slow--roll parameter $epsilon_1$ as a function of the large number of $e$-folds $N$. This leads to a classification of models through thei