ﻻ يوجد ملخص باللغة العربية
We briefly study the dynamics at classical level of the Carrollian limit, with vanishing speed of light and no possible propagation of signals, for a simply effective action in a flat space with a open string tachyon as scalar field. The canonical analysis of the theory indicates that the equation of motion is of Dirac type contrary to non-relativistic case where the equation is of Schrodinger type. The ultimate intention is to analize the latter case with electromagnetic fluxes finding that in this case the open string tachyon cannot be interpreted as time.
We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of $e$-folds before the end of inflation. Using the relation between the observables like $n_s$ a
It is shown that Ashtekar and Hansenss Universal Structure at Spatial Infinity (SPI), which has recently be used to establish the conservation of supercharges from past null infity to future null infinity, is an example of a (pseudo-) Carollian struc
Within the framework of tachyon inflation, we consider different steep potentials and check their viability in light of the Planck 2015 data. We see that in this scenario, the inverse power-law potential $V(phi)=V_{0}(phi/phi_{0})^{-n}$ with $n=2$ le
Our aim is to investigate the thermodynamic properties of the universe bounded by the cosmological event horizon and dominated by the tachyon fluid. We give two different laws of evolution of our universe. Further, we show the first law and the gener
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function ap