ترغب بنشر مسار تعليمي؟ اضغط هنا

In-situ Raman study of laser-induced graphene oxidation

255   0   0.0 ( 0 )
 نشر من قبل Felix Herziger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present in-situ Raman measurements of laser-induced oxidation in exfoliated single-layer graphene. By using high-power laser irradiation, we can selectively and in a controlled way initiate the oxidation process and investigate its evolution over time. Our results show that the laser-induced oxidation process is divided into two separate stages, namely tensile strain due to heating and subsequent $p$-type doping due to oxygen binding. We discuss the temporal evolution of the $D/G$-mode ratio during oxidation and explain the unexpected steady decrease of the defect-induced $D$ mode at long irradiation times. Our results provide a deeper understanding of the oxidation process in single-layer graphene and demonstrate the possibility of sub-$mu$m patterning of graphene by an optical method.



قيم البحث

اقرأ أيضاً

241 - I. Calizo , W. Bao , F. Miao 2007
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The obtained results are important for graphene characterization and its proposed graphene applications in electronic devices.
Cubic boron phosphide BP has been studied in situ by X-ray diffraction and Raman scattering up to 55 GPa at 300 K in a diamond anvil cell. The bulk modulus of B0 = 174(2) GPa has been established, which is in excellent agreement with our ab initio ca lculations. The data on Raman shift as a function of pressure, combined with equation-of-state data, allowed us to estimate the Gruneisen parameters of the TO and LO modes of zinc-blende structure, {gamma}GTO = 1.16 and {gamma}GLO = 1.04, just like in the case of other AIIIBV diamond-like phases, for which {gamma}GTO > {gamma}GLO = 1. We also established that the pressure dependence of the effective electro-optical constant {alpha} is responsible for a strong change in relative intensities of the TO and LO modes from ITO/ILO ~0.25 at 0.1 MPa to ITO/ILO ~2.5 at 45 GPa, for which we also find excellent agreement between experiment and theory.
Gallium selenide (GaSe) is a 2D material with a thickness-dependent gap, strong non-linear optical coefficients and uncommon interband optical selection rules, making it interesting for optoelectronic and spintronic applications. In this work, we mon itor the oxidation dynamics of GaSe with thicknesses ranging from 10 to 200 nm using Raman spectroscopy. In ambient temperature and humidity conditions, the intensity of all Raman modes and the luminescence decrease rapidly with moderate exposure to above-gap illumination. Concurrently, several oxidation products appear in the Raman spectra: Ga$_2$Se$_3$, Ga$_2$O$_3$ and amorphous and crystalline selenium. We find that no safe measurement power exists for optical measurements on ultrathin GaSe in ambient conditions. We demonstrate that the simultaneous presence of oxygen, humidity, and above-gap illumination is required to activate this photo-oxidation process, which is attributed to the transfer of photo-generated charge carriers towards aqueous oxygen at the sample surface, generating highly reactive superoxide anions that rapidly degrade the sample and quench the optical response of the material.
We report in-situ Raman scattering studies of electrochemically top gated VO$_2$ thin film to address metal-insulator transition (MIT) under gating. The room temperature monoclinic insulating phase goes to metallic state at a gate voltage of 2.6 V. H owever, the number of Raman modes do not change with electrolyte gating showing that the metallic phase is still monoclinic. The high frequency Raman mode A$_g$(7) near 616 cm$^{-1}$ ascribed to V-O vibration of bond length 2.06 AA~ in VO$_6$ octahedra hardens with increasing gate voltage and the B$_g$(3) mode near 654 cm$^{-1}$ softens. This shows that the distortion of the VO$_6$ octahedra in the monoclinic phase decreases with gating. The time dependent Raman data at fixed gate voltages of 1 V (for 50 minute, showing enhancement of conductivity by a factor of 50) and 2 V (for 130 minute, showing further increase in conductivity by a factor of 5) show similar changes in high frequency Raman modes A$_g$(7) and B$_g$(3) as observed in gating. This slow change in conductance together with Raman frequency changes show that the governing mechanism for metalization is more likely to the diffusion controlled oxygen vacancy formation due to the applied electric field.
We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag(110) surface using Scanning Tunneling Microscopy and High-Resolution Photoemission Spectroscopy. The results show that silicene nanoribbons present a strong resistance towards oxidation using molecular oxygen. This can be overcome by increasing the electric field in the STM tunnel junction above a threshold of +2.6 V to induce oxygen dissociation and reaction. The higher reactivity of the silicene nanoribbons towards atomic oxygen is observed as expected. The HR-PES confirm these observations: Even at high exposures of molecular oxygen, the Si 2p core-level peaks corresponding to pristine silicene remain dominant, reflecting a very low reactivity to molecular oxygen. Complete oxidation is obtained following exposure to high doses of atomic oxygen; the Si 2p core level peak corresponding to pristine silicene disappears.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا