ﻻ يوجد ملخص باللغة العربية
We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag(110) surface using Scanning Tunneling Microscopy and High-Resolution Photoemission Spectroscopy. The results show that silicene nanoribbons present a strong resistance towards oxidation using molecular oxygen. This can be overcome by increasing the electric field in the STM tunnel junction above a threshold of +2.6 V to induce oxygen dissociation and reaction. The higher reactivity of the silicene nanoribbons towards atomic oxygen is observed as expected. The HR-PES confirm these observations: Even at high exposures of molecular oxygen, the Si 2p core-level peaks corresponding to pristine silicene remain dominant, reflecting a very low reactivity to molecular oxygen. Complete oxidation is obtained following exposure to high doses of atomic oxygen; the Si 2p core level peak corresponding to pristine silicene disappears.
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. By using low-temperature scanning tunneling microscopy, it is found that the adsorption configurations an
Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to gradual and reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed as
We study quasi-ballistic heat transfer through air between a hot nanometer-scale tip and a sample. The hot tip/surface configuration is widely used to perform nonintrusive confined heating. Using a Monte-Carlo simulation, we find that the thermal con
Due to the drastically different intralayer versus interlayer bonding strengths, the mechanical, thermal, and electrical properties of two-dimensional (2D) materials are highly anisotropic between the in-plane and out-of-plane directions. The structu
Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3