ﻻ يوجد ملخص باللغة العربية
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The obtained results are important for graphene characterization and its proposed graphene applications in electronic devices.
We show the evolution of Raman spectra with number of graphene layers on different substrates, SiO$_{2}$/Si and conducting indium tin oxide (ITO) plate. The G mode peak position and the intensity ratio of G and 2D bands depend on the preparation of s
Graphene edges are of particular interest, since their chirality determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with well defined edges oriented at different crystallographic directions. The po
We present an analysis of deep-UV Raman measurements of graphite, graphene and carbon nanotubes. For excitation energies above the strong optical absorption peak at the $M$ point in the Brillouin zone ($approx 4.7,text{eV}$), we partially suppress do
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel
In this paper, we report our study on gold (Au) films with different thicknesses deposited on single layer graphene (SLG) as surface enhanced Raman scattering (SERS) substrates for the characterization of rhodamine (R6G) molecules. We find that an Au