ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreversible Incremental Behavior in a Granular Material

124   0   0.0 ( 0 )
 نشر من قبل Hernan A. Makse
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We test the elasticity of granular aggregates using increments of shear and volume strain in a numerical simulation. We find that the increment in volume strain is almost reversible, but the increment in shear strain is not. The strength of this irreversibility increases as the average number of contacts per particle (the coordination number) decreases. For increments of volume strain, an elastic model that includes both average and fluctuating motions between contacting particles reproduces well the numerical results over the entire range of coordination numbers. For increments of shear strain, the theory and simulations agree quite well for high values of the coordination number.



قيم البحث

اقرأ أيضاً

We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the po lymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
Modeling collective motion in non-conservative systems, such as granular materials, is difficult since a general microscopic-to-macroscopic approach is not available: there is no Hamiltonian, no known stationary densities in phase space, not a known small set of relevant variables. Phenomenological coarse-grained models are a good alternative, provided that one has identified a few slow observables and collected a sufficient amount of data for their dynamics. Here we study the case of a vibrofluidized dense granular material. The experimental study of a tracer, dispersed into the media, showed the evidence of many time scales: fast ballistic, intermediate caged, slow superdiffusive, very slow diffusive. A numerical investigation has demonstrated that tracers superdiffusion is related to slow rotating drifts of the granular medium. Here we offer a deeper insight into the slow scales of the granular medium, and propose a new phenomenological model for such a secular dynamics. Based upon the model for the granular medium, we also introduce a model for the tracer (fast and slow) dynamics, which consists in a stochastic system of equations for three coupled variables, and is therefore more refined and successful than previous models.
We perform experimental and numerical studies of a granular system under cyclic-compression to investigate reversibility and memory effects. We focus on the quasi-static forcing of dense systems, which is most relevant to a wide range of geophysical, industrial, and astrophysical problems. We find that soft-sphere simulations with proper stiffness and friction quantitatively reproduce both the translational and rotational displacements of the grains. We then utilize these simulations to demonstrate that such systems are capable of storing the history of previous compressions. While both mean translational and rotational displacements encode such memory, the response is fundamentally different for translations compared to rotations. For translational displacements, this memory of prior forcing depends on the coefficient of static inter-particle friction, but rotational memory is not altered by the level of friction.
The mechanical properties of a disordered heterogeneous medium depend, in general, on a complex interplay between multiple length scales. Connecting local interactions to macroscopic observables, such as stiffness or fracture, is thus challenging in this type of material. Here, we study the properties of a cohesive granular material composed of glass beads held together by soft polymer bridges. We characterise the mechanical response of single bridges under traction and shear, using a setup based on the deflection of flexible micropipettes. These measurements, along with information from X-ray microtomograms of the granular packings, then inform large-scale discrete element model (DEM) simulations. Although simple, these simulations are constrained in every way by empirical measurement and accurately predict mechanical responses of the aggregates, including details on their compressive failure, and how the materials stiffness depends on the stiffness and geometry of its parts. By demonstrating how to accurately relate microscopic information to macroscopic properties, these results provide new perspectives for predicting the behaviour of complex disordered materials, such as porous rock, snow, or foam.
The kinematic flow pattern in slow deformation of a model dense granular medium is studied at high resolution using emph{in situ} imaging, coupled with particle tracking. The deformation configuration is indentation by a flat punch under macroscopic plane-strain conditions. Using a general analysis method, velocity gradients and deformation fields are obtained from the disordered grain arrangement, enabling flow characteristics to be quantified. The key observations are the formation of a stagnation zone, as in dilute granular flow past obstacles; occurrence of vortices in the flow immediately underneath the punch; and formation of distinct shear bands adjoining the stagnation zone. The transient and steady state stagnation zone geometry, as well as the strength of the vortices and strain rates in the shear bands, are obtained from the experimental data. All of these results are well-reproduced in exact-scale Non-Smooth Contact Dynamics (NSCD) simulations. Full 3D numerical particle positions from the simulations allow extraction of flow features that are extremely difficult to obtain from experiments. Three examples of these, namely material free surface evolution, deformation of a grain column below the punch and resolution of velocities inside the primary shear band, are highlighted. The variety of flow features observed in this model problem also illustrates the difficulty involved in formulating a complete micromechanical analytical description of the deformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا