We survey earlier results on factorizations of extremal projectors and relative extremal projectors and present preliminary results on non-commutative factorizations of relative extremal projectors: we deduce the existence of such factorizations for sl(4) and sl(5).
A brief review of the extremal projectors for contragredient Lie (super)symmetries (finite-dimensional simple Lie algebras, basic classical Lie superalgebras, infinite-dimensional affine Kac-Moody algebras and superalgebras, as well as their quantum
$q$-analogs) is given. Some bibliographic comments on the applications of extremal projectors are presented.
We give a further extension and generalization of Dedekinds theorem over those presented by Yamaguchi. In addition, we give two corollaries on irreducible representations of finite groups and a conjugation of the group algebra of the groups which have an index-two abelian subgroups.
We generalize the construction of (higher) cluster categories by Claire Amiot and by Lingyan Guo to the relative context. We prove the existence of an $ n $-cluster tilting object in a Frobenius extriangulated category which is stably $ n $-Calabi--Y
au and Hom-finite, arising from a left $ (n+1) $-Calabi--Yau morphism. Our results apply in particular to relative Ginzburg dg algebras coming from ice quivers with potential and higher Auslander algebras associated to $ n $-representation-finite algebras.
We show that relative Property (T) for the abelianization of a nilpotent normal subgroup implies relative Property (T) for the subgroup itself. This and other results are a consequence of a theorem of independent interest, which states that if $H$ is
a closed subgroup of a locally compact group $G$, and $A$ is a closed subgroup of the center of $H$, such that $A$ is normal in $G$, and $(G/A, H/A)$ has relative Property (T), then $(G, H^{(1)})$ has relative Property (T), where $H^{(1)}$ is the closure of the commutator subgroup of $H$. In fact, the assumption that $A$ is in the center of $H$ can be replaced with the weaker assumption that $A$ is abelian and every $H$-invariant finite measure on the unitary dual of $A$ is supported on the set of fixed points.
Following the ideas of Ginzburg, for a subgroup $K$ of a connected reductive $mathbb{R}$-group $G$ we introduce the notion of $K$-admissible $D$-modules on a homogeneous $G$-variety $Z$. We show that $K$-admissible $D$-modules are regular holonomic w
hen $K$ and $Z$ are absolutely spherical. This framework includes: (i) the relative characters attached to two spherical subgroups $H_1$ and $H_2$, provided that the twisting character $chi_i$ factors through the maximal reductive quotient of $H_i$, for $i = 1, 2$; (ii) localization on $Z$ of Harish-Chandra modules; (iii) the generalized matrix coefficients when $K(mathbb{R})$ is maximal compact. This complements the holonomicity proven by Aizenbud--Gourevitch--Minchenko. The use of regularity is illustrated by a crude estimate on the growth of $K$-admissible distributions which based on tools from subanalytic geometry.