ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative cluster categories

98   0   0.0 ( 0 )
 نشر من قبل Yilin Wu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Yilin Wu




اسأل ChatGPT حول البحث

We generalize the construction of (higher) cluster categories by Claire Amiot and by Lingyan Guo to the relative context. We prove the existence of an $ n $-cluster tilting object in a Frobenius extriangulated category which is stably $ n $-Calabi--Yau and Hom-finite, arising from a left $ (n+1) $-Calabi--Yau morphism. Our results apply in particular to relative Ginzburg dg algebras coming from ice quivers with potential and higher Auslander algebras associated to $ n $-representation-finite algebras.



قيم البحث

اقرأ أيضاً

214 - Pin Liu 2008
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
167 - Bernhard Keller 2009
This is an introduction to some aspects of Fomin-Zelevinskys cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria) and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture for pairs of Dynkin diagrams (details will appear elsewhere) and recent results on the interpretation of mutations as derived equivalences.
Building on work by Geiss-Leclerc-Schroer and by Buan-Iyama-Reiten-Scott we investigate the link between certain cluster algebras with coefficients and suitable 2-Calabi-Yau categories. These include the cluster-categories associated with acyclic qui vers and certain Frobenius subcategories of module categories over preprojective algebras. Our motivation comes from the conjectures formulated by Fomin and Zelevinsky in `Cluster algebras IV: Coefficients. We provide new evidence for Conjectures 5.4, 6.10, 7.2, 7.10 and 7.12 and show by an example that the statement of Conjecture 7.17 does not always hold.
As a generalization of acyclic 2-Calabi-Yau categories, we consider 2-Calabi-Yau categories with a directed cluster-tilting subcategory; we study their cluster-tilting subcategories and the cluster combinatorics that they encode. We show that such ca tegories have a cluster structure. Triangulated 2-Calabi-Yau categories with a directed cluster-tilting subcategory are closely related to representations of certain semi-hereditary categories, more specifically to representations of thread quivers. Thread quivers are a tool to classify and study certain semi-hereditary categories using both quivers and linearly ordered sets (threads). We study the case where the thread quiver consists of a single thread (so that representations of this thread quiver correspond to representations of some linearly ordered set), and show that, similar to the case of a Dynkin quiver of type $A$, the cluster-tilting subcategories can be understood via triangulations of an associated cyclically ordered set. In this way, we gain insight into the structure of the cluster-tilting subcategories of 2-Calabi-Yau categories with a directed cluster-tilting subcategory. As an application, we show that every 2-Calabi-Yau category which admits a directed cluster-tilting subcategory with countably many isomorphism classes of indecomposable objects has a cluster-tilting subcategory $mathcal{V}$ with the following property: any rigid object in the cluster category can be reached from $mathcal{V}$ by finitely many mutations. This implies that there is a cluster map which is defined on all rigid objects, and thus that there is a cluster algebra whose cluster variables are exactly given by the rigid indecomposable objects.
415 - Changjian Fu , Pin Liu 2007
We show that a tilting module over the endomorphism algebra of a cluster-tilting object in a 2-Calabi-Yau triangulated category lifts to a cluster-tilting object in this 2-Calabi-Yau triangulated category. This generalizes a recent work of D. Smith for cluster categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا