ﻻ يوجد ملخص باللغة العربية
We give a further extension and generalization of Dedekinds theorem over those presented by Yamaguchi. In addition, we give two corollaries on irreducible representations of finite groups and a conjugation of the group algebra of the groups which have an index-two abelian subgroups.
We give an analog of Frobenius theorem about the factorization of the group determinant on the group algebra of finite abelian groups and we extend it into dihedral groups and generalized quaternion groups. Furthermore, we describe the group determin
We generalize the concept of the group determinant and prove a necessary and sufficient novel condition for a subset to be a subgroup. This development is based on the group determinant work by Edward Formanek, David Sibley, and Richard Mansfield, wh
Inspired by the Capelli identities for group determinants obtained by T^oru Umeda, we give a basis of the center of the group algebra of any finite group by using Capelli identities for irreducible representations. The Capelli identities for irredu
Left braces, introduced by Rump, have turned out to provide an important tool in the study of set theoretic solutions of the quantum Yang-Baxter equation. In particular, they have allowed to construct several new families of solutions. A left brace $
Let $U$ be a Sylow $p$-subgroup of the finite Chevalley group of type $D_4$ over the field of $q$ elements, where $q$ is a power of a prime $p$. We describe a construction of the generic character table of $U$.