ﻻ يوجد ملخص باللغة العربية
A niobium titanite nitride-based superconducting nanodevice in which the Josephson critical current can be modulated by a gate voltage - a Cooper-pair transistor - has proven a remarkably long parity lifetime exceeding one minute at temperatures close to absolute zero.
Here we report the fabrication and characterization of fully superconducting quantum interference proximity transistors (SQUIPTs) based on the implementation of vanadium (V) in the superconducting loop. At low temperature, the devices show high flux-
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog bloc
The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by ti
We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch b
Spectroscopy is a powerful tool to probe physical, chemical, and biological systems. Recent advances in microfabrication have introduced novel, intriguing mesoscopic quantum systems including superconductor-semiconductor hybrid devices and topologica