ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-resonator circuit QED: A superconducting quantum switch

298   0   0.0 ( 0 )
 نشر من قبل Matteo Mariantoni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch between the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.



قيم البحث

اقرأ أيضاً

We present a method for measuring the internal state of a superconducting qubit inside an on-chip microwave resonator. We show that one qubit state can be associated with the generation of an increasingly large cavity coherent field, while the other remains associated with the vacuum. By measuring the outgoing resonator field with conventional devices, an efficient single-shot QND-like qubit readout can be achieved, enabling a high-fidelity measurement in the spirit of the electron-shelving technique for trapped ions. We expect that the proposed ideas can be adapted to different superconducting qubit designs and contribute to the further improvement of qubit readout fidelity.
We analyze the quantum dynamics of two electromagnetic oscillators coupled in series to a voltage biased Josephson junction. When the applied voltage leads to a Josephson frequency across the junction which matches the sum of the two mode frequencies , tunneling Cooper pairs excite photons in both modes simultaneously leading to far-from-equilibrium states. These states display highly non-classical features including strong anti-bunching, violation of Cauchy-Schwartz inequalities, and number squeezing. The regimes of low and high photon occupancies allow for analytical results which are supported by a full numerical treatment. The impact of asymmetries between the two modes is explored, revealing a pronounced enhancement of number squeezing when the modes are damped at different rates.
We propose the implementation of fast resonant gates in circuit quantum electrodynamics for quantum information processing. We show how a suitable utilization of three-level superconducting qubits inside a resonator constitutes a key tool to perform diverse two-qubit resonant gates, improving the operation speed when compared to slower dispersive techniques. To illustrate the benefit of resonant two-qubit gates in circuit QED, we consider the implementation of a two-dimensional cluster state in an array of N x N superconducting qubits by using resonant controlled-phase (CPHASE) and one-qubit gates, where the generation time grows linearly with N. For N=3, and taking into account decoherence mechanisms, a fidelity over 60% for the generation of this cluster state is obtained.
We present a theoretical study of a superconducting charge qubit dispersively coupled to a transmission line resonator. Starting from a master equation description of this coupled system and using a polaron transformation, we obtain an exact effectiv e master equation for the qubit. We then use quantum trajectory theory to investigate the measurement of the qubit by continuous homodyne measurement of the resonator out-field. Using the same porlaron transformation, a stochastic master equation for the conditional state of the qubit is obtained. From this result, various definitions of the measurement time are studied. Furthermore, we find that in the limit of strong homodyne measurement, typical quantum trajectories for the qubit exhibit a crossover from diffusive to jump-like behavior. Finally, in the presence of Rabi drive on the qubit, the qubit dynamics is shown to exhibit quantum Zeno behavior.
In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmission is a weak measureme nt of the collective qubit inversion. As an example of this result, we focus on the case of two qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is realized without relying on an entangling Hamiltonian. We show that, for {em current} experimental values of both the decoherence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage of the fact that one of the Bell states is decoherence-free under Purcell decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا