ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Quantum Computing Using Nanowire Devices

127   0   0.0 ( 0 )
 نشر من قبل Christian Tutschku MSc
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by time-dependently tuning topologically non-trivial parameter regions. In this work, we simulate the exchange of four Majorana modes in T-shaped junctions made out of p-wave superconducting Rashba wires. We derive concrete experimental predictions for (quasi-)adiabatic braiding times and determine geometric conditions for successful Majorana exchange processes. Contrary to the widespread opinion, we show for the first time that in the adiabatic limit the gating time needs to be smaller than the inverse of the squared superconducting order parameter and scales linearly with the gating potential. Further, we show how to circumvent the formation of additional Majorana modes in branched nanowire systems, arising at wire intersection points of narrow junctions. Finally, we propose a multi qubit setup, which allows for universal and in particular topologically protected quantum computing.



قيم البحث

اقرأ أيضاً

530 - V. Mourik , K. Zuo , S. M. Frolov 2012
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one supercond ucting electrode (NbTiN). Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias voltage. These bound states remain fixed to zero bias even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.
Nonlocal quasiparticle transport in normal-superconductor-normal (NSN) hybrid structures probes sub-gap states in the proximity region and is especially attractive in the context of Majorana research. Conductance measurement provides only partial inf ormation about nonlocal response composed from both electron-like and hole-like quasiparticle excitations. In this work, we show how a nonlocal shot noise measurement delivers a missing puzzle piece in NSN InAs nanowire-based devices. We demonstrate that in a trivial superconducting phase quasiparticle response is practically charge-neutral, dominated by the heat transport component with a thermal conductance being on the order of conductance quantum. This is qualitatively explained by numerous Andreev reflections of a diffusing quasiparticle, that makes its charge completely uncertain. Consistently, strong fluctuations and sign reversal are observed in the sub-gap nonlocal conductance, including occasional Andreev rectification signals. Our results prove conductance and noise as complementary measurements to characterize quasiparticle transport in superconducting proximity devices.
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.
We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device (gatemon) is controlled by an electrostatic gate that depletes carriers in a semiconducting wea k link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {mu}s) and dephasing times (1 {mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
113 - P. Yu , J. Chen , M. Gomanko 2020
Conductance at zero source-drain voltage bias in InSb nanowire/NbTiN superconductor devices exhibits peaks that are close to a quantized value of $2e^2/h$. The nearly quantized resonances evolve in the tunnel barrier strength, magnetic field and magn etic field orientation in a way consistent with Majorana zero modes. Our devices feature two tunnel probes on both ends of the nanowire separated by a 400 nm nanowire segment covered by the superconductor. We only find nearly quantized zero bias peaks localized to one end of the nanowire, while conductance dips are observed for the same parameters on the other end. This undermines the Majorana explanation as Majorana modes must come in pairs. We do identify states delocalized from end to end near zero magnetic field and at higher electron density, which is not in the basic Majorana regime. We lay out procedures for assessing the nonlocality of subgap wavefunctions and provide a classification of nanowire bound states based on their localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا