ﻻ يوجد ملخص باللغة العربية
Motivated by robotic surveillance applications, this paper studies the novel problem of maximizing the return time entropy of a Markov chain, subject to a graph topology with travel times and stationary distribution. The return time entropy is the weighted average, over all graph nodes, of the entropy of the first return times of the Markov chain; this objective function is a function series that does not admit in general a closed form. The paper features theoretical and computational contributions. First, we obtain a discrete-time delayed linear system for the return time probability distribution and establish its convergence properties. We show that the objective function is continuous over a compact set and therefore admits a global maximum; a unique globally-optimal solution is known only for complete graphs with unitary travel times. We then establish upper and lower bounds between the return time entropy and the well-known entropy rate of the Markov chain. To compute the optimal Markov chain numerically, we establish the asymptotic equality between entropy, conditional entropy and truncated entropy, and propose an iteration to compute the gradient of the truncated entropy. Finally, we apply these results to the robotic surveillance problem. Our numerical results show that, for a model of rational intruder over prototypical graph topologies and test cases, the maximum return time entropy chain performs better than several existing Markov chains.
This article surveys recent advancements of strategy designs for persistent robotic surveillance tasks with the focus on stochastic approaches. The problem describes how mobile robots stochastically patrol a graph in an efficient way where the effici
Many modern techniques employed in physics, such a computation of path integrals, rely on random walks on graphs that can be represented as Markov chains. Traditionally, estimates of running times of such sampling algorithms are computed using the nu
This paper studies a stochastic robotic surveillance problem where a mobile robot moves randomly on a graph to capture a potential intruder that strategically attacks a location on the graph. The intruder is assumed to be omniscient: it knows the cur
We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agents t
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation