ﻻ يوجد ملخص باللغة العربية
The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE, E>100 GeV) gamma-rays. A number of those VHE SNRs exhibit a shell-type morphology spatially coincident with the shock front of the SNR. The members of this VHE shell SNR club are RX J1713.7-3946, Vela Jr, RCW 86, SN 1006, and HESS J1731-347. The latter two objects have been poorly studied in high-energy (HE, 0.1<E<100 GeV) gamma-rays and need to be investigated in order to draw the global picture of this class of SNRs and constrain the characteristics of the underlying population of accelerated particles. Using 6 years of Fermi P7 reprocessed data, we studied the HE counterpart of the SNRs HESS J1731-347 and SN 1006. The two SNRs are not detected in the data and given that there is no hint of detection, we do not expect any detection in the coming years from the SNRs. However in both cases, we derived upper limits that significantly constrain the gamma-ray emission mechanism and can rule out a standard hadronic scenario with a confidence level > 5 sigma. With this Fermi analysis, we now have a complete view of the HE to VHE gamma-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (<1.8) suggesting a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE gamma-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar gamma-ray luminosity supporting the idea of a common emission mechanism. While the gamma-ray emission is likely to be leptonic dominated, this does not rule out efficient hadron acceleration in those SNRs.
Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at $mathrm{E} approx mathrm{3}times mathrm{10}^mathrm{15}$ eV. Our Milky Way galaxy hosts more t
The emission mechanism for hard $gamma$-ray spectra from supernova remnants (SNRs) is still a matter of debate. Recent multi-wavelength observations of TeV source HESS J1912+101 show that it is associated with an SNR with an age of $sim 100$ kyrs, ma
In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected
If cosmic rays with energies <100 TeV originate in the galaxy and are accelerated in shock waves in shell-type supernova remnants (SNRs), gamma-rays will be produced as the result of proton and electron interactions with the local interstellar medium
We report the first high-significance GeV gamma-ray detections of supernova remnants HESS J1731-347 and SN 1006, both of which have been previously detected by imaging atmospheric Cherenkov Telescopes above 1 TeV. Using 8 years of Fermi Pass 8 data a